1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The asymptotic Bode plot of a transfer function is shown in the figure. the transfer function G(s) corresponding to this bode plot is GATE ECE 2007 Control Systems - Frequency Response Analysis Question 24 English
A
$${1 \over {\left( {s + 1} \right)\left( {s + 20} \right)}}$$
B
$${1 \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
C
$${{100} \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
D
$${{100} \over {s\left( {s + 1} \right)\left( {1 + 0.05s} \right)}}$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
If the closed-loop transfer function of a control system is given as T(s)=$${{s - 5} \over {(s + 2)(s + 3)}},$$ then it is
A
an unstable system
B
an uncontrollable system
C
a minimum phase system
D
a non-minimum phase system
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a plant is $$$T\left(s\right)=\frac5{\left(s+5\right)\left(s^2+s+1\right)}$$$ The second-order approximation of T (s) using dominant pole concept is:
A
$$\frac1{\left(s+5\right)\left(s+1\right)}$$
B
$$\frac5{\left(s+5\right)\left(s+1\right)}$$
C
$$\frac5{\left(s^2+s+1\right)}$$
D
$$\frac1{\left(s^2+s+1\right)}$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are

A
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
B
$$\left[ { - 2,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 1,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
C
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ {2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
D
$$\left[ {1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12