1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
Consider the Bode magnitude plot shown in figure. The transfer function H(s) is GATE ECE 2004 Control Systems - Frequency Response Analysis Question 37 English
A
$${{\left( {s + 10} \right)} \over {\left( {s + 1} \right)\left( {s + 100} \right)}}$$
B
$${{10\left( {s + 1} \right)} \over {\left( {s + 10} \right)\left( {s + 100} \right)}}$$
C
$${{{{10}^2}\left( {s + 1} \right)} \over {\left( {s + 10} \right)\left( {s + 100} \right)}}$$
D
$${{{{10}^3}\left( {s + 100} \right)} \over {\left( {s + 1} \right)\left( {s + 10} \right)}}$$
2
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
For the polynomial
P(s) = s5 + s4 + 2s3 + 2s2 + 3s + 15 ,
the number of roots which lie in the right half of the s-plane is
A
4
B
2
C
3
D
1
3
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A causal system having the transfer function $$G\left(s\right)\;=\;\frac1{s\;+\;2}$$ is excited with 10u(t). The time at which the output reaches 99% of its steady state value is
A
2.7 sec
B
2.5 sec
C
2.3 sec
D
2.1 sec
4
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
Given A $$ = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ the state transition matrix eAt is given by
A
$$\left[ {\matrix{ 0 & {{e^{ - t}}} \cr {{0^{ - t}}} & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} & 0 \cr 0 & {{e^t}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr 0 & {{e^{ - t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & {{e^t}} \cr {{e^t}} & 0 \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12