1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A system has poles at 0.01 Hz, 1 Hz and 80 Hz; zeros at 5 Hz, 100 Hz and 200 Hz. The approximate phase of the system response at 20 Hz is
A
$$ - {90^ \circ }$$
B
$$ {0^ \circ }$$
C
$$ {90^ \circ }$$
D
$$ - {180^ \circ }$$
2
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
The impulse response $$h\left[ n \right]$$ of a linear time invariant system is given as
$$h\left[ n \right] = \left\{ {\matrix{ { - 2\sqrt 2 ,} & {n = 1, - 1} \cr {4\sqrt 2 ,} & {n = 2, - 2} \cr {0,} & {otherwise} \cr } } \right.$$

If the input to the above system is the sequence $${e^{j\pi n/4}},$$ then the output is

A
$$4\sqrt 2 \,{\mkern 1mu} {e^{j\,\pi \,n\,\,/\,4}}$$
B
$$4\sqrt 2 \,{\mkern 1mu} {e^{ - j\,\pi \,n\,/4}}$$
C
$$4{\mkern 1mu} {e^{j\,\pi \,n\,/4}}$$
D
$$ - 4{\mkern 1mu} {e^{j\,\pi \,n\,/4}}$$
3
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A causal LTI system is described by the difference equation $$2y\left[ n \right] = ay\left[ {n - 2} \right] - 2x\left[ n \right] + \beta x\left[ {n - 1} \right].$$ The system is stable only if
A
$$\left| \alpha \right| = 2,\,\left| \beta \right| < 2$$
B
$$\left| \alpha \right| > 2,\,\left| \beta \right| > 2$$
C
$$\left| \alpha \right| < 2$$, any value of $$\beta $$
D
$$\left| \beta \right| < 2,$$ any value of $$\alpha $$
4
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
The impulse response $$h\left[ n \right]$$ of a linear time-invariant system is given by $$h\left[ n \right]$$ $$ = u\left[ {n + 3} \right] + u\left[ {n - 2} \right] - 2\,u\left[ {n - 7} \right],$$ where $$u\left[ n \right]$$ is the unit step sequence. The above system is
A
stable but not causal.
B
stable and causal.
C
causal but unstable.
D
unstable and not causal.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12