NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 1987

Subjective
Solve for x the following equation:

$${\log _{(2x + 3)}}(6{x^2} + 23x + 21) = 4 - {\log _{(3x + 7)}}(4{x^2} + 12x + 9)\,$$

Answer

$${{ - 1} \over 4}$$
2

IIT-JEE 1985

Subjective
Find the sum of the series : $$$\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}\,{}^n{C_r}\left[ {{1 \over {{2^r}}} + {{{3^r}} \over {{2^{2r}}}} + {{{7^r}} \over {{2^{3r}}}} + {{{{15}^r}} \over {{2^{4r}}}}..........up\,\,to\,\,m\,\,terms} \right]} $$$

Answer

$${{{2^{mn}} - 1} \over {{2^{mn}}\left( {{2^n} - 1} \right)}}$$
3

IIT-JEE 1984

Subjective
If $$n$$ is a natural number such that
$$n = {p_1}{}^{{\alpha _1}}{p_2}{}^{{\alpha _2}}.{p_3}{}^{{\alpha _3}}........{p_k}{}^{{\alpha _k}}$$ and $${p_1},{p_2},\,\,......,\,{p_k}$$ are distinct primes, then show that $$In$$ $$n \ge k$$ $$in$$ 2

Answer

Solve it.
4

IIT-JEE 1984

Subjective
If $$a > 0,\,b > 0$$ and $$\,c > 0,$$ prove that $$\,c > 0,$$ prove that $$\left( {a + b + c} \right)\left( {{1 \over a} + {1 \over b} + {1 \over c}} \right) \ge 9$$

Answer

Solve it.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12