MCQ (More than One Correct Answer)
Let $\hat{\imath}, \hat{\jmath}$ and $\hat{k}$ be the unit vectors along the three positive coordinate axes. Let
$$
\begin{aligned}
& \vec{a}=3 \hat{...
Let $$P_{1}$$ and $$P_{2}$$ be two planes given by
$$
\begin{aligned}
&P_{1}: 10 x+15 y+12 z-60=0 \\
&P_{2}:-2 x+5 y+4 z-20=0
\end{aligned}
$$
Which...
Let $$S$$ be the reflection of a point $$Q$$ with respect to the plane given by
$$
\vec{r}=-(t+p) \hat{\imath}+t \hat{\jmath}+(1+p) \hat{k}
$$
where...
Let O be the origin and $$\overrightarrow {OA} = 2\widehat i + 2\widehat j + \widehat k$$ and $$\overrightarrow {OB} = \widehat i - 2\widehat j + 2\...
Let $$\alpha $$2 + $$\beta $$2 + $$\gamma $$2 $$ \ne $$ 0 and $$\alpha $$ + $$\gamma $$ = 1. Suppose the point (3, 2, $$-$$1) is the mirror image of t...
Let a and b be positive real numbers. Suppose $$PQ = a\widehat i + b\widehat j$$ and $$PS = a\widehat i - b\widehat j$$ are adjacent sides of a parall...
Let L1 and L2 be the following straight lines.$${L_1}:{{x - 1} \over 1} = {y \over { - 1}} = {{z - 1} \over 3}$$ and $${L_2}:{{x - 1} \over { - 3}} = ...
Three lines $${L_1}:r = \lambda \widehat i$$, $$\lambda $$ $$ \in $$ R,$${L_2}:r = \widehat k + \mu \widehat j$$, $$\mu $$ $$ \in $$ R and $${L_3}:r =...
Let L1 and L2 denote the lines$$r = \widehat i + \lambda ( - \widehat i + 2\widehat j + 2\widehat k)$$, $$\lambda $$$$ \in $$ R
and $$r = \mu (2\wide...
Let P1 : 2x + y $$-$$ z = 3 and P2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is(are) TRUE?
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and $$\widehat w = {1 \over {\sqrt 6 }}\left...
Consider a pyramid $$OPQRS$$ located in the first octant $$\left( {x \ge 0,y \ge 0,z \ge 0} \right)$$ with $$O$$ as origin, and $$OP$$ and $$OR$$ alon...
In $${R^3},$$ consider the planes $$\,{P_1}:y = 0$$ and $${P_2}:x + z = 1.$$ Let $${P_3}$$ be the plane, different from $${P_1}$$ and $${P_2}$$, which...
In $${R^3},$$ let $$L$$ be a straight lines passing through the origin. Suppose that all the points on $$L$$ are at a constant distance from the two ...
Let $$\Delta PQR$$ be a triangle. Let $$\vec a = \overrightarrow {QR} ,\vec b = \overrightarrow {RP} $$ and $$\overrightarrow c = \overrightarrow {PQ...
Let $$\overrightarrow x ,\overrightarrow y $$ and $$\overrightarrow z $$ be three vectors each of magnitude $$\sqrt 2 $$ and the angle between each pa...
Two lines $${L_1}:x = 5,{y \over {3 - \alpha }} = {z \over { - 2}}$$ and $${L_2}:x = \alpha ,{y \over { - 1}} = {z \over {2 - \alpha }}$$ are coplana...
A line $$l$$ passing through the origin is perpendicular to the lines
$$$\,{l_1}:\left( {3 + t} \right)\widehat i + \left( { - 1 + 2t} \right)\wideha...
If the straight lines $$\,{{x - 1} \over 2} = {{y + 1} \over k} = {z \over 2}$$ and $${{x + 1} \over 5} = {{y + 1} \over 2} = {z \over k}$$ are coplan...
The vector (s) which is/are coplanar with vectors $${\widehat i + \widehat j + 2\widehat k}$$ and $${\widehat i + 2\widehat j + \widehat k,}$$ and per...
Let $${\overrightarrow A }$$ be vector parallel to line of intersection of planes $${P_1}$$ and $${P_2}.$$ Planes $${P_1}$$ is parallel to the vector...
Let $$a$$ and $$b$$ two non-collinear unit vectors. If $$u = a - \left( {a\,.\,b} \right)\,b$$ and $$v = a \times b,$$ then $$\left| v \right|$$ is
Which of the following expressions are meaningful?
The vector $$\,{1 \over 3}\left( {2\widehat i - 2\widehat j + \widehat k} \right)$$ is
Let $$\vec a = 2\hat i - \hat j + \hat k,\vec b = \hat i + 2\hat j - \hat k$$ and $$\overrightarrow c = \widehat i + \widehat j - 2\widehat k - 2\wi...
Numerical
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equationsx + 2y + 3z = $$\alpha$$4x + 5y + 6z = $$\beta$$7x + ...
Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be real numbers such that the system of linear equationsx + 2y + 3z = $$\alpha$$4x + 5y + 6z = $$\beta$$7x + ...
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and ...
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Co...
Three lines are given by $$r = \lambda \widehat i,\,\lambda \in R$$, $$r = \mu (\widehat i + \widehat j),\,\mu \in R$$ and $$r = v(\widehat i + \wid...
Let P be a point in the first octant, whose image Q in the plane x + y = 3 (that is, the line segment PQ is perpendicular to the plane x + y = 3 and t...
Let a and b be two unit vectors such that a . b = 0. For some x, y$$ \in $$R, let $$\overrightarrow c = x\overrightarrow a + y\overrightarrow b + \...
Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a...
Let $$\overrightarrow a \,\,,\,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-coplanar unit vectors such that the angle between every ...
Consider the set of eight vectors
$$V = \left\{ {a\widehat i + b\widehat j + c\widehat k:a,b.c \in \left\{ { - 1,1} \right\}} \right\}.$$ Three non-c...
If $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors satisfying
$${\left| {\overrightarrow a - \overrightarrow b...
Let $$\overrightarrow a = - \widehat i - \widehat k,\overrightarrow b = - \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i + 2\wide...
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors in space given by $$\overrightarrow a = {{\widehat i - 2\widehat j} \over {\sqrt 5 }...
If the distance between the plane $$Ax-2y+z=d$$ and the plane containing the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over 4}$$ and $...
MCQ (Single Correct Answer)
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarro...
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
Let $$P$$ be the image of the point $$(3,1,7)$$ with respect to the plane $$x-y+z=3.$$ Then the equation of the plane passing through $$P$$ and contai...
Match the following :
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In $${R^2},$$ If the magnitude of the projection vector of...
Match the following :
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In a triangle $$\Delta XYZ,$$ let $$a, b,$$ and $$c$$ be t...
From a point $$P\left( {\lambda ,\lambda ,\lambda } \right),$$ perpendicular $$PQ$$ and $$PR$$ are drawn respectively on the lines $$y=x, z=1$$ and $$...
match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$...
Consider the lines $${L_1}:{{x - 1} \over 2} = {y \over { - 1}} = {{z + 3} \over 1},{L_2} : {{x - 4} \over 1} = {{y + 3} \over 1} = {{z + 3} \over 2}$...
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors such that $$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {29} $$...
The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$ and $$x-y+z=3$$ and at a distance $${2 \over {\sqrt 3 }}$...
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ ...
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c...
Match the statements given in Column -$$I$$ with the values given in Column-$$II.$$
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A) $$\,\,\,\,...
Let $$P,Q,R$$ and $$S$$ be the points on the plane with position vectors $${ - 2\widehat i - \widehat j,4\widehat i,3\widehat i + 3\widehat j}$$ and $...
Equation of the plane containing the straight line $${x \over 2} = {y \over 3} = {z \over 4}$$ and perpendicular to the plane containing the straight ...
Two adjacent sides of a parallelogram $$ABCD$$ are given by
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrighta...
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the per...
Match the statement in Column-$$I$$ with the values in Column-$$II$$
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line fro...
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are unit vectors such that $$\left( {\overrightarrow a ...
Let $$P(3,2,6)$$ be a point in space and $$Q$$ be a point on the line
$$$\widehat r = \left( {\widehat i - \widehat j + 2\widehat k} \right) + \mu \l...
A line with positive direction cosines passes through the point $$P(2, -1, 2)$$ and makes equal angles with the coordinate axes. The line meets the pl...
Let two non-collinear unit vectors $$\widehat a$$ and $$\widehat b$$ form an acute angle. A point $$P$$ moves so that at any time $$t$$ the position v...
The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $$\overrightarrow a \,,\,\overrightarrow b ,\overrighta...
Consider the lines
$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}\,\,\,\,{L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \o...
Consider the lines
$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}\,\,\,\,{L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \o...
Consider the lines
$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}\,\,\,\,{L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \...
Consider three planes
$$${P_1}:x - y + z = 1$$$
$$${P_2}:x + y - z = 1$$$
$$${P_3}:x - 3y + 3z = 2$$$
Let $${L_1},$$ $${L_2},$$ $${L_3}$$ be the line...
The minimum of distinct real values of $$\lambda ,$$ for which the vectors $$ - {\lambda ^2}\widehat i + \widehat j + \widehat k,$$ $$\widehat i - {\l...
Let $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ be unit vectors such that $${\overrightarrow a + \overrightarrow b + \overrigh...
Consider the planes $$3x-6y-2z=15$$ and $$2x+y-2z=5.$$
STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=...
Let the vectors $$\overrightarrow {PQ} ,\,\,\overrightarrow {QR} ,\,\,\overrightarrow {RS} ,\,\,\overrightarrow {ST} ,\,\,\overrightarrow {TU} ,$$ and...
A plane which is perpendicular to two planes $$2x - 2y + z = 0$$ and $$x - y + 2z = 4,$$ passes through $$(1, -2, 1).$$ The distance of the plane from...
Let $$\overrightarrow a = \widehat i + 2\widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow ...
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,$$ $$B$$ and $$C.$$ If the centroid $$D$$ $$(x, y, z)$...
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overr...
If $$\overrightarrow a = \left( {\widehat i + \widehat j + \widehat k} \right),\overrightarrow a .\overrightarrow b = 1$$ and $$\overrightarrow a \...
If the lines $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $$\,{{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, t...
The unit vector which is orthogonal to the vector $$3\overrightarrow i + 2\overrightarrow j + 6\overrightarrow k $$ and is coplanar with the vectors...
The value of $$k$$ such that $${{x - 4} \over 1} = {{y - 2} \over 1} = {{z - k} \over 2}$$ lies in the plane $$2x -4y +z = 7,$$ is
The value of $$'a'$$ so that the volume of parallelopiped formed by $$\widehat i + a\widehat j + \widehat k,\widehat j + a\widehat k$$ and $$a\widehat...
If $${\overrightarrow a }$$ and $${\overrightarrow b }$$ are two unit vectors such that $${\overrightarrow a + 2\overrightarrow b }$$ and $${5\overri...
Let $$\overrightarrow V = 2\overrightarrow i + \overrightarrow j - \overrightarrow k $$ and $$\overrightarrow W = \overrightarrow i + 3\overright...
Let $$\overrightarrow a = \overrightarrow i - \overrightarrow k ,\overrightarrow b = x\overrightarrow i + \overrightarrow j + \left( {1 - x} \rig...
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors, then $${\left| {\overrightarrow a - \overrightarrow b }...
If the vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ form the sides $$BC,$$ $$CA$$ and $$AB$$ respectively of a triangl...
Let the vectors $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ be such that
$$\left( {\overrightarrow a \ti...
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit coplanar vectors, then the scalar triple product $$\left[ {2\over...
Let $$a=2i+j-2k$$ and $$b=i+j.$$ If $$c$$ is a vector such that $$a.$$ $$c = \left| c \right|,\left| {c - a} \right| = 2\sqrt 2 $$ and the angle betw...
Let $$a=2i+j+k, b=i+2j-k$$ and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$ then $$c =$$
If $$a = i + j + k,\overrightarrow b = 4i + 3j + 4k$$ and $$c = i + \alpha j + \beta k$$ are linearly dependent vectors and $$\left| c \right| = \sq...
For three vectors $$u,v,w$$ which of the following expression is not equal to any of the remaining three?
Let $$\overrightarrow a = \widehat i - \widehat j,\overrightarrow b = \widehat j - \widehat k,\overrightarrow c = \widehat k - \widehat i.$$ If $$...
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar unit vectors such that $$\overrightarrow a \times \left( {\overright...
Let $$\overrightarrow u ,\overrightarrow v $$ and $$\overrightarrow w $$ be vectors such that $$\overrightarrow u + \overrightarrow v + \overrightar...
If $$\overrightarrow a ,$$ $$\overrightarrow b $$ and $$\overrightarrow c $$ are three non coplanar vectors, then
$$\left( {\overrightarrow a + \ov...
Let $$\overrightarrow p $$ and $$\overrightarrow q $$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\ov...
Let $$\alpha ,\beta ,\gamma $$ be distinct real numbers. The points with position
vectors $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k,...
Let $$a, b, c$$ be distinct non-negative numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\widehat i + \widehat k$$ and $$c\widehat i...
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,$$ be three non-coplanar vectors and $$\overrightarrow p ,\overrightarrow q ,\overright...
The number of vectors of unit length perpendicular to vectors $$\overrightarrow a = \left( {1,1,0} \right)$$ and $$\overrightarrow b = \left( {0,1,1...
Let $$\overrightarrow a = {a_1}i + {a_2}j + {a_3}k,\,\,\,\overrightarrow b = {b_1}i + {b_2}j + {b_3}k$$ and $$\overrightarrow c = {c_1}i + {c_2}j +...
The points with position vectors $$60i+3j,$$ $$40i-8j,$$ $$ai-52j$$ are collinear if
The volume of the parallelopiped whose sides are given by
$$\overrightarrow {OA} = 2i - 2j,\,\overrightarrow {OB} = i + j - k,\,\overrightarrow {OC...
For non-zero vectors $${\overrightarrow a ,\,\overrightarrow b ,\overrightarrow c },$$ $$\left| {\left( {\overrightarrow a \times \overrightarrow b }...
The scalar $$\overrightarrow A .\left( {\overrightarrow B + \overrightarrow C } \right) \times \left( {\overrightarrow A + \overrightarrow B + \ove...
Subjective
Match the statements / expressions given in Column-$$I$$ with the values given in Column-$$II.$$
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
...
Match the statements/expressions given in Column-$$I$$ with the values given in Column-$$II.$$
$$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $$\,\,\,\,\,$$ Column-$$I...
Consider the following linear equations $$ax+by+cz=0;$$ $$\,\,\,$$ $$bx+cy+az=0;$$ $$\,\,\,$$ $$cx+ay+bz=0$$
Match the conditions/expressions in Colu...
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first q...
Find the equation of the plane containing the line $$2x-y+z-3=0,3x+y+z=5$$ and at a distance of $${1 \over {\sqrt 6 }}$$ from the point $$(2, 1, -1).$...
If the incident ray on a surface is along the unit vector $$\widehat v\,\,,$$ the reflected ray is along the unit vector $$\widehat w\,\,$$ and the no...
A parallelopiped $$'S'$$ has base points $$A, B, C$$ and $$D$$ and upper face points $$A',$$ $$B',$$ $$C'$$ and $$D'.$$ This parallelopiped is compres...
Find the equation of plane passing through $$(1, 1, 1)$$ & parallel to the lines $${L_1},{L_2}$$ having direction ratios $$(1,0,-1),(1,-1,0).$$ Fi...
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are distinct vectors such that
$$\,\overrightarrow a \tim...
$${P_1}$$ and $${P_2}$$ are planes passing through origin. $${L_1}$$ and $${L_2}$$ are two line on $${P_1}$$ and $${P_2}$$ respectively such that thei...
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles bet...
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ th...
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$...
Show, by vector methods, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of the point of concur...
Find $$3-$$dimensional vectors $${\overrightarrow v _1},{\overrightarrow v _2},{\overrightarrow v _3}$$ satisfying
$$\,{\overrightarrow v _1}.{\over...
Let $$\overrightarrow A \left( t \right) = {f_1}\left( t \right)\widehat i + {f_2}\left( t \right)\widehat j$$ and
$$$\overrightarrow B \left( t \rig...
Let $$u$$ and $$v$$ be units vectors. If $$w$$ is a vector such that $$w + \left( {w \times u} \right) = v,$$ then prove that $$\left| {\left( {u \tim...
Prove, by vector methods or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid-points ...
For any two vectors $$u$$ and $$v,$$ prove that
(a) $${\left( {u\,.\,v} \right)^2} + {\left| {u \times v} \right|^2} = {\left| u \right|^2}{\left| v ...
If $$A,B$$ and $$C$$ are vectors such that $$\left| B \right| = \left| C \right|.$$ Prove that
$$\left[ {\left( {A + B} \right) \times \left( {A + C}...
The position vectors of the vertices $$A, B$$ and $$C$$ of a tetrahedron $$ABCD$$ are $$\widehat i + \widehat j + \widehat k,\,\widehat i$$ and $$3\wi...
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a...
In a triangle $$ABC, D$$ and $$E$$ are points on $$BC$$ and $$AC$$ respectively, such that $$BD=2DC$$ and $$AE=3EC.$$ Let $$P$$ be the point of inters...
Determine the value of $$'c'$$ so that for all real $$x,$$ the vector
$$cx\widehat i - 6\widehat j - 3\widehat k$$ and $$x\widehat i + 2\widehat j + ...
Let $$\overrightarrow A = 2\overrightarrow i + \overrightarrow k ,\,\overrightarrow B = \overrightarrow i + \overrightarrow j + \overrightarrow k...
If vectors $$\overrightarrow A ,\overrightarrow B ,\overrightarrow C $$ are coplanar, show that
$$$\left| {\matrix{
{} & {\overrightarrow {a.}...
In a triangle $$OAB,E$$ is the midpoint of $$BO$$ and $$D$$ is a point on $$AB$$ such that $$AD:DB=2:1.$$ If $$OD$$ and $$AE$$ intersect at $$P,$$ det...
Let $$OA$$ $$CB$$ be a parallelogram with $$O$$ at the origin and $$OC$$ a diagonal. Let $$D$$ be the midpoint of $$OA.$$ Using vector methods prove ...
If $$A, B, C, D$$ are any four points in space, prove that -
$$\left| {\overrightarrow {AB} \times \overrightarrow {CD} + \overrightarrow {BC} \ti...
The position vectors of the points $$A, B, C$$ and $$D$$ are $$3\widehat i - 2\widehat j - \widehat k,\,2\widehat i + 3\widehat j - 4\widehat k,\, - \...
A vector $$\overrightarrow A $$ has components $${A_1},{A_2},{A_3}$$ in a right -handed rectangular Cartesian coordinate system $$oxyz.$$ The coordina...
$${A_1},{A_2},.................{A_n}$$ are the vertices of a regular plane polygon with $$n$$ sides and $$O$$ is its centre. Show that
$$\sum\limits_...
Find all values of $$\lambda $$ such that $$x, y, z,$$$$\, \ne $$$$(0,0,0)$$ and
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow...
From a point $$O$$ inside a triangle $$ABC,$$ perpendiculars $$OD$$, $$OE, OF$$ are drawn to the sides $$BC, CA, AB$$ respectively. Prove that the pe...
Fill in the Blanks
Let $$OA=a,$$ $$OB=10a+2b$$ and $$OC=b$$ where $$O,A$$ and $$C$$ are non-collinear points. Let $$p$$ denote the area of the quadrilateral $$OABC,$$ an...
If $$\overrightarrow b \,$$ and $$\overrightarrow c \,$$ are two non-collinear unit vectors and $$\overrightarrow a \,$$ is any vector, then $$\left( ...
A nonzero vector $$\overrightarrow a $$ is parallel to the line of intersection of the plane determined by the vectors $$\widehat i,\widehat i + \wide...
A unit vector perpendicular to the plane determined by the points $$P\left( {1, - 1,2} \right)Q\left( {2,0, - 1} \right)$$ and $$R\left( {0,2,1} \righ...
A unit vector coplanar with $$\overrightarrow i + \overrightarrow j + 2\overrightarrow k $$ and $$\overrightarrow i + 2\overrightarrow j + \overri...
Given that $$\overrightarrow a = \left( {1,1,1} \right),\,\,\overrightarrow c = \left( {0,1, - 1} \right),\,\overrightarrow a .\overrightarrow b = ...
The components of a vector $$\overrightarrow a $$ along and perpendicular to a non-zero vector $$\overrightarrow b $$ are ......and .....respectively.
If the vectors $$a\widehat i + \widehat j + \widehat k,\,\,\widehat i + b\widehat j + \widehat k$$ and $$\widehat i + \widehat j + c\widehat k$$
$$\...
Let $$b = 4\widehat i + 3\widehat j$$ and $$\overrightarrow c $$ be two vectors perpendicular to each other in the $$xy$$-plane. All vectors in the sa...
If $$\left| {\matrix{
a & {{a^2}} & {1 + {a^3}} \cr
b & {{b^2}} & {1 + {b^3}} \cr
c & {{c^2}} & {1 + {c^3}} \cr ...
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C} $$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow ...
If $$\overrightarrow A = \left( {1,1,1} \right),\,\,\overrightarrow C = \left( {0,1, - 1} \right)$$ are given vectors, then a vector $$B$$ satifying...
$$A, B, C$$ and $$D,$$ are four points in a plane with position vectors $$a, b, c$$ and $$d$$ respectively such that
$$$\left( {\overrightarrow a - \...
The unit vector perpendicular to the plane determined by $$P\left( {1, - 1,2} \right),\,Q\left( {2,0, - 1} \right)$$ and $$R\left( {0,2,1} \right)$$ i...
The area of the triangle whose vertices are $$A(1, -1, 2), B(2, 1, -1), C(3, -1, 2)$$ is ..........
Let $$\overrightarrow A ,\overrightarrow B ,\overrightarrow C $$ be vectors of length $$3, 4, 5$$ respectively. Let $$\overrightarrow A $$ be perpendi...
True or False
For any three vectors $${\overrightarrow a ,\,\overrightarrow b ,}$$ and $${\overrightarrow c ,}$$
$$\left( {\overrightarrow a - \overrightarrow b }...
The points with position vectors $$a+b,$$ $$a-b,$$ and $$a+kb$$ are collinear for all real values of $$k.$$
If $$X.A=0, X.B=0, X.C=0$$ for some non-zero vector $$X,$$ then $$\left[ {A\,B\,C} \right] = 0$$
Let $$\overrightarrow A ,\overrightarrow B $$ and $${\overrightarrow C }$$ be unit vectors suppose that $$\overrightarrow A .\overrightarrow B = \ove...