1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The volume of a ball is increasing at the rate of $4 \pi \mathrm{cc} / \mathrm{sec}$. The rate of increase of the radius, when the volume is $288 \pi \mathrm{cc}$, is

A
$\frac{1}{6} \mathrm{~cm} / \mathrm{sec}$
B
$\frac{1}{36} \mathrm{~cm} / \mathrm{sec}$
C
$6 \mathrm{~cm} / \mathrm{sec}$
D
$36 \mathrm{~cm} / \mathrm{sec}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=(x-1)(x-2)(x-3), x \in[0,4]$. Values of C will be __________ if L.M.V.T. (Lagrange's Mean Value Theorem) can be applied.

A
$\frac{4-2 \sqrt{3}}{3}, \frac{4+2 \sqrt{3}}{3}$
B
$\frac{6-2 \sqrt{3}}{3}, \frac{6+2 \sqrt{3}}{3}$
C
$\frac{6-\sqrt{3}}{3}, \frac{6+\sqrt{3}}{3}$
D
$2-\sqrt{3}, 2+\sqrt{3}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=4 x-5$ is a tangent to the curve $y^2=p x^3+q$ at $(2,3)$, then the values of $p$ and $q$ are respectively

A
$-2,7$
B
$7,-2$
C
$2,-7$
D
$-7,-2$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Water is running in a hemispherical bowl of radius 180 cm at the rate of 108 cubic decimeters per minute. How fast the water level is rising when depth of the water level in the bowl is 120 cm ? ( 1 decimeter $=10 \mathrm{~cm}$)

A
$16 \pi \mathrm{~cm} / \mathrm{s}$
B
$\frac{16}{\pi} \mathrm{~cm} / \mathrm{s}$
C
$\frac{1}{16 \pi} \mathrm{~cm} / \mathrm{s}$
D
$\frac{\pi}{16} \mathrm{~cm} / \mathrm{s}$
MHT CET Subjects
EXAM MAP