1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
12
B
9
C
15
D
33
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ denotes the acute angle between the curves $y=10-x^2$ and $y=2+x^2$, at a point of the intersection, then $|\tan \theta|$ is equal to

A
$\frac{8}{15}$
B
$\frac{8}{17}$
C
$\frac{4}{9}$
D
$\frac{7}{17}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \log x+b x^2+x$ has its extremum values at $x=-1$ and $x=2$, then

A
$\mathrm{a}=2, \mathrm{~b}=-1$
B
$\mathrm{a}=2, \mathrm{~b}=-\frac{1}{2}$
C
$\mathrm{a}=-2, \mathrm{~b}=\frac{1}{2}$
D
$\mathrm{a}=2, \mathrm{~b}=\frac{1}{2}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The set of all points, for which $f(x)=x^2 e^{-x}$ strictly increases, is

A
$(0,2)$
B
$(2, \infty)$
C
$(-2,0)$
D
$(-\infty, \infty)$
MHT CET Subjects
EXAM MAP