1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the perpendicular drawn from the origin on the normal to the curve $x^2+2 x y-3 y^2=0$ at the point $(2,2)$ is

A
$\sqrt{2}$ units
B
$3 \sqrt{2}$ units
C
$2 \sqrt{2}$ units
D
$\frac{1}{\sqrt{2}}$ units
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log (1+x)-\frac{2 x}{2+x}$ then $\mathrm{f}(x)$ is increasing in

A
$(-1, \infty)$
B
$(-\infty, \infty)$
C
$(0, \infty)$
D
$(1, \infty)$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle $\theta$, at which the curves $y=3^x$ and $y=7^x$ intersect, is given by

A
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1+(\log 3)(\log 7)}$
B
$\tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1+(\log 3)(\log 7)}$
C
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1-(\log 3)(\log 7)}$
D
$\quad \tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1-(\log 3)(\log 7)}$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=x^3-6 x^2+\mathrm{ax}+\mathrm{b}$ satisfies the conditions of Rolle's theorem in $[1,3]$. Then the values of $a$ and $b$ are respectively

A
$11,-6$
B
$-6,11$
C
$-11,6$
D
$6,-11$
MHT CET Subjects
EXAM MAP