The function $$\mathrm{f}(x)=x^3-6 x^2+9 x+2$$ has maximum value when $$x$$ is
If $$y=4 x-5$$ is a tangent to the curve $$y^2=\mathrm{p} x^3+\mathrm{q}$$ at $$(2,3)$$, then $$\mathrm{p}-\mathrm{q}$$ is
The diagonal of a square is changing at the rate of $$0.5 \mathrm{~cm} / \mathrm{sec}$$. Then the rate of change of area when the area is $$400 \mathrm{~cm}^2$$ is equal to
Let $$x_0$$ be the point of local minima of $$\mathrm{f}(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$$ where $$\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$$, then value of $$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$$ at $$x=x_0$$ is