1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is

A
5
B
20
C
6
D
21
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=\sin ^4 x+\cos ^4 x$ increases if

A
$0 < x < \frac{\pi}{8}$
B
$\frac{\pi}{4} < x < \frac{\pi}{2}$
C
$\frac{3 \pi}{8} < x < \frac{5 \pi}{8}$
D
$\frac{5 \pi}{8} < x < \frac{3 \pi}{4}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The normal to the curve $x=9(1+\cos \theta)$, $y=9 \sin \theta$ at $\theta$ always passes through the fixed point

A
$(9,0)$
B
$(8,9)$
C
$(0,9)$
D
$(9,8)$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom is to contain 4000 cubic cm . of liquid. The dimensions of the tank so that the surface area of the tank is minimum, is

A
side $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$
B
side $=10 \mathrm{~cm}$, height $=20 \mathrm{~cm}$
C
side $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$
D
side $=20 \mathrm{~cm}$, height $=05 \mathrm{~cm}$
MHT CET Subjects
EXAM MAP