1
MHT CET 2021 21th September Evening Shift
+2
-0

The abscissa of the points, where the tangent to the curve $$y=x^3-3 x^2-9 x+5$$ is parallel to $$X$$ axis are

A
$$x=1$$ and $$-1$$
B
$$x=1$$ and $$-3$$
C
$$x=-1$$ and 3
D
$$\mathrm{x}=0$$ and 1
2
MHT CET 2021 21th September Evening Shift
+2
-0

For all real $$x$$, the minimum value of the function $$f(x)=\frac{1-x+x^2}{1+x+x^2}$$ is

A
$$\frac{1}{3}$$
B
0
C
3
D
1
3
MHT CET 2021 21th September Evening Shift
+2
-0

The function $$f(x)=\log (1+x)-\frac{2 x}{2+x}$$ is increasing on

A
$$(-\infty, \infty)$$
B
$$(-5, \infty)$$
C
$$(-\infty, 0)$$
D
$$(-1, \infty)$$
4
MHT CET 2021 21th September Morning Shift
+2
-0

A body at an unknown temperature is placed in a room which is held at a constant temperature of $$30^{\circ} \mathrm{F}$$. If after 10 minutes the temperature of the body is $$0^{\circ} \mathrm{F}$$ and after 20 minutes the temperature of the body is $$15^{\circ} \mathrm{F}$$, then the expression for the temperature of the body at any time $$\mathrm{t}$$ is

A
$$\mathrm{T}=-60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
B
$$\mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30$$
C
$$\mathrm{T}=60 \mathrm{e}^{-0.069 t}+30$$
D
$$\mathrm{T}=60 \mathrm{e}^{-0.069 \mathrm{t}}-30$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination