1
MHT CET 2021 23rd September Evening Shift
+2
-0

The radius of a circular plate is increasing at the rate of $$0.01 \mathrm{~cm} / \mathrm{sec}$$, when the radius is $$12 \mathrm{~cm}$$. Then the rate at which the area increases is

A
$$60 ~\pi \mathrm{~sq} . \mathrm{cm} / \mathrm{sec}$$
B
$$0.24 ~\pi \mathrm{~sq} . \mathrm{cm} / \mathrm{sec}$$
C
$$1.2 ~\pi \mathrm{~sq} . \mathrm{cm} / \mathrm{sec}$$
D
$$24 ~\pi \mathrm{~sq} . \mathrm{cm} / \mathrm{sec}$$
2
MHT CET 2021 23rd September Evening Shift
+2
-0

If $$x=a(\theta+\sin \theta)$$ and $$y=a(1-\cos \theta)$$ then $$\left(\frac{d^2 y}{d x^2}\right)_{at~ \theta=\pi / 2}=$$

A
$$\frac{a}{2}$$
B
$$\frac{1}{\mathrm{a}}$$
C
$$\mathrm{a}$$
D
$$2 \mathrm{a}$$
3
MHT CET 2021 23rd September Evening Shift
+2
-0

The equation of tangent to the curve $$y=\sqrt{2} \sin \left(2 x+\frac{\pi}{4}\right)$$ at $$x=\frac{\pi}{4}$$, is

A
$$2 x+y-\frac{\pi}{2}-1=0$$
B
$$2 x-y-\frac{\pi}{2}+1=0$$
C
$$x+y-\frac{\pi}{2}-1=0$$
D
$$x-y-\frac{\pi}{2}+1=0$$
4
MHT CET 2021 23th September Morning Shift
+2
-0

Function $$f(x)=e^{-1 / x}$$ is strictly increasing for all $$x$$ where

A
$$x$$ is only positive real number
B
$$x$$ is only negative real number
C
$$x$$ is a real number
D
$$x$$ is a non-zero real number
EXAM MAP
Medical
NEET