1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A point moves along the arc of parabola $y=2 x^2$. Its abscissa increases uniformly at the rate of 2 units $/ \mathrm{sec}$. At the instant, the point is passing through ( 1,2 ), its distance from origin is increasing at the rate of

A
$\frac{36}{\sqrt{5}}$ units/sec.
B
$\frac{18}{\sqrt{5}}$ units $/ \mathrm{sec}$.
C
$\frac{36}{5}$ units/sec.
D
$\frac{18}{5}$ units $/ \mathrm{sec}$.
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the normal to the curve $y=x \log x$, which is parallel to the line $2 x-2 y+3=0$, is

A
$x+y=3 \mathrm{e}^{-2}$
B
$x-y=3 \mathrm{e}^{-2}$
C
$ x-y=3 \mathrm{e}^2$
D
$x+y=3 \mathrm{e}^2$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=2 x^3-6 x+5$ is an increasing function, if

A
$0< x<1$
B
$-1< x<1$
C
$x<-1$ or $x>1$
D
$-1< x<-\frac{1}{2}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A square plate is contracting at the uniform rate $3 \mathrm{~cm}^2 / \mathrm{sec}$, then the rate at which the perimeter is decreasing, when the side of the square is 15 cm , is

A
$\frac{1}{5} \mathrm{~cm} / \mathrm{sec}$
B
$\frac{2}{5} \mathrm{~cm} / \mathrm{sec}$
C
$\frac{1}{10} \mathrm{~cm} / \mathrm{sec}$
D
$\frac{3}{10} \mathrm{~cm} / \mathrm{sec}$
MHT CET Subjects
EXAM MAP