1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A point moves along the arc of parabola $y=2 x^2$. Its abscissa increases uniformly at the rate of 2 units $/ \mathrm{sec}$. At the instant, the point is passing through ( 1,2 ), its distance from origin is increasing at the rate of

A
$\frac{36}{\sqrt{5}}$ units/sec.
B
$\frac{18}{\sqrt{5}}$ units $/ \mathrm{sec}$.
C
$\frac{36}{5}$ units/sec.
D
$\frac{18}{5}$ units $/ \mathrm{sec}$.
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the normal to the curve $y=x \log x$, which is parallel to the line $2 x-2 y+3=0$, is

A
$x+y=3 \mathrm{e}^{-2}$
B
$x-y=3 \mathrm{e}^{-2}$
C
$ x-y=3 \mathrm{e}^2$
D
$x+y=3 \mathrm{e}^2$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=2 x^3-6 x+5$ is an increasing function, if

A
$0< x<1$
B
$-1< x<1$
C
$x<-1$ or $x>1$
D
$-1< x<-\frac{1}{2}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A square plate is contracting at the uniform rate $3 \mathrm{~cm}^2 / \mathrm{sec}$, then the rate at which the perimeter is decreasing, when the side of the square is 15 cm , is

A
$\frac{1}{5} \mathrm{~cm} / \mathrm{sec}$
B
$\frac{2}{5} \mathrm{~cm} / \mathrm{sec}$
C
$\frac{1}{10} \mathrm{~cm} / \mathrm{sec}$
D
$\frac{3}{10} \mathrm{~cm} / \mathrm{sec}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12