1
MHT CET 2021 20th September Evening Shift
+2
-0

The surface area of a spherical balloon is increasing at the rate $$2 \mathrm{~cm}^2 / \mathrm{sec}$$. Then rate of increase in the volume of the balloon is , when the radius of the balloon is $$6 \mathrm{~cm}$$.

A
$$4 \mathrm{~cm}^3 / \mathrm{sec}$$.
B
$$16 \mathrm{~cm}^3 / \mathrm{sec}$$.
C
$$36 \mathrm{~cm}^3 / \mathrm{sec}$$.
D
$$6 \mathrm{~cm}^3 / \mathrm{sec}$$.
2
MHT CET 2021 20th September Evening Shift
+2
-0

If $$f(x)=2x^3-15x^2-144x-7$$, then $$f(x)$$ is strictly decreasing in

A
$$(-8,3)$$
B
$$(-3,8)$$
C
$$(3,8)$$
D
$$(-8,-3)$$
3
MHT CET 2021 20th September Evening Shift
+2
-0

The equation of tangent to the circle $$x^2+y^2=64$$ at the point $$\mathrm{P\left(\frac{2\pi}{3}\right)}$$ is

A
$$x-\sqrt3 y-16=0$$
B
$$\sqrt3x+y-16=0$$
C
$$x+\sqrt3y+16=0$$
D
$$x-\sqrt3y+16=0$$
4
MHT CET 2021 20th September Evening Shift
+2
-0

Water is being poured at the rate of 36 m$$^3$$/min. into a cylindrical vessel, whose circular base is of radius 3 m. Then the wate level in the cylinder is rising at the rate of

A
$$\frac{4}{\pi}$$ m/min
B
$$4\pi$$ m/min
C
$$\frac{1}{4\pi}$$ m/min
D
$$\frac{2}{\pi}$$ m/min
EXAM MAP
Medical
NEET