1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The radius of the base of a cone is increasing at the rate $3 \mathrm{~cm} /$ minute and the altitude is decreasing at the rate $4 \mathrm{~cm} /$ minute . The rate at which the lateral surface area is changing, when the radius is 7 cm and altitude is 24 cm is

A
$75 \pi \mathrm{~cm}^2 /$ minute
B
$25 \pi \mathrm{~cm}^2 /$ minute
C
$3 \pi \mathrm{~cm}^2 /$ minute
D
$54 \pi \mathrm{~cm}^2 /$ minute
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The function $x^5-5 x^4+5 x^3-10$ has a maximum, when $x$ is equal to
A
0
B
1
C
2
D
3
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function f defined by $\mathrm{f}(x)=(x+2) \mathrm{e}^{-x}$ is

A
decreasing for all $x \in \mathbb{R}$
B
decreasing in $(-\infty,-1)$ and increasing in ( $-1, \infty$ )
C
decreasing in $(-1, \infty)$ and increasing in ( $-\infty,-1$ )
D
increasing for all $x \in \mathbb{R}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=x(x+3) \mathrm{e}^{-\frac{x}{2}}$ satisfies all the conditions of Rolle's theorem in $[-3,0]$, then c is

A
0
B
-1
C
-2
D
-3
MHT CET Subjects
EXAM MAP