1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
A population $p(t)$ of 1000 bacteria introduced into a nutrient medium grows according to the relation $\mathrm{p}(\mathrm{t})=1000+\frac{1000 \mathrm{t}}{100+\mathrm{t}^2}$. The maximum size of this bacterial population is
A
1100
B
1250
C
1050
D
950
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
By dropping a stone in a quiet lake, a wave in the form of circle is generated. The radius of the circular wave increases at the rate of $2.1 \mathrm{~cm} / \mathrm{sec}$. Then the rate of increase of the enclosed circular region, when the radius of the circular wave is 10 cm , is (Given $\pi=\frac{22}{7}$)
A
$66 \mathrm{~cm}^2 /$ second
B
$122 \mathrm{~cm}^2 /$ second
C
$132 \mathrm{~cm}^2 /$ second
D
$110 \mathrm{~cm}^2 /$ second
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The angle between the curves $x y=6$ and $x^2 y=12$ is
A
$\tan ^{-1} \frac{3}{11}$
B
$\tan ^{-1} \frac{11}{3}$
C
$\tan ^{-1} \frac{2}{11}$
D
$\tan ^{-1} \frac{1}{11}$
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
In the mean value theorem, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, if $\mathrm{a}=0, \mathrm{~b}=\frac{1}{2}$ and $\mathrm{f}(x)=x(x-1)(x-2)$, then the value of $c$ is
A
$1-\frac{\sqrt{15}}{6}$
B
$\quad 1-\frac{\sqrt{13}}{6}$
C
$\quad 1-\frac{\sqrt{21}}{6}$
D
$1+\frac{\sqrt{21}}{6}$
MHT CET Subjects
EXAM MAP