1
MHT CET 2021 20th September Morning Shift
+2
-0

A wire of length 20 units is divided into two parts such that the product of one part and cube of the other part is maximum, then product of these parts is

A
5
B
75
C
15
D
70
2
MHT CET 2021 20th September Morning Shift
+2
-0

A particle is moving on a straight line. The distance $$\mathrm{S}$$ travelled in time $$\mathrm{t}$$ is given by $$\mathrm{S=a t^2+b t+6}$$. If the particle comes to rest after 4 seconds at a distance of $$16 \mathrm{~m}$$. from the starting point, then the acceleration of the particle is.

A
$$\frac{-3}{4} \mathrm{~m} / \mathrm{sec}^2$$
B
$$\frac{-1}{2} \mathrm{~m} / \mathrm{sec}^2$$
C
$$-1 \mathrm{~m} / \mathrm{sec}^2$$
D
$$\frac{-5}{4} \mathrm{~m} / \mathrm{sec}^2$$
3
MHT CET 2021 20th September Morning Shift
+2
-0

The equation of the tangent to the curve $$y = 4x{e^x}$$ at $$\left( { - 1,{{ - 4} \over e}} \right)$$ is

A
$$6x - {e \over 4}y = - 5$$
B
$$x - {e \over 4}y = 0$$
C
$$x = - 1$$
D
$$y = {{ - 4} \over e}$$
4
MHT CET 2020 16th October Evening Shift
+2
-0

The equation of normal to the curve $$y=\sin \left(\frac{\pi x}{4}\right)$$ at the point $$(2,5)$$ is

A
$$x=2$$
B
$$x+y=5$$
C
$$x+y=2$$
D
$$y=5$$
EXAM MAP
Medical
NEETAIIMS