1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let K be the set of all real values of $x$, where the function $\mathrm{f}(x)=\sin |x|-|x|+2(x-\pi) \cos |x|$ is not differentiable. Then the set K is

A
$\{0\}$
B
an empty set
C
$\{\pi\}$
D
$\{0, \pi\}$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}$ defined on $$\left(-\frac{1}{3}, \frac{1}{3}\right)$$ by $$\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{1}{x} \log \left(\frac{1+3 x}{1-2 x}\right) & , \quad x \neq 0 \\ \mathrm{k} & , \quad x=0 \end{array}\right.$$ is continuous at $$x=0$$, then $$\mathrm{k}$$ is

A
6
B
1
C
5
D
$$-$$5
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$$, then as $$x$$ approaches a, $$\frac{\mathrm{g}(x) \mathrm{f}(\mathrm{a})-\mathrm{g}(\mathrm{a}) \mathrm{f}(x)}{(x-\mathrm{a})}$$ approaches

A
3
B
5
C
0
D
2
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}(x)=5-|x-2|$$ and $$\mathrm{g}(x)=|x+1|, x \in \mathrm{R}$$ If $$\mathrm{f}(x)$$ attains maximum value at $$\alpha$$ and $$\mathrm{g}(x)$$ attains minimum value at $$\beta$$, then $$\lim _\limits{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^2-5 x+6\right)}{x^2-6 x+8}$$ is equal to

A
$$\frac{1}{2}$$
B
$$\frac{-3}{2}$$
C
$$\frac{-1}{2}$$
D
$$\frac{3}{2}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12