1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The normal to the curve, $y(x-2)(x-3)=x+6$ at the point, where the curve intersects the Y-axis, passes through the point

A
$\left(-\frac{1}{2},-\frac{1}{2}\right)$
B
$\left(\frac{1}{2}, \frac{1}{2}\right)$
C
$\left(\frac{1}{2},-\frac{1}{3}\right)$
D
$\left(\frac{1}{2}, \frac{1}{3}\right)$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(x)=x^3-6 x^2+9 x+2$$ has maximum value when $$x$$ is

A
1
B
2
C
3
D
6
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=4 x-5$$ is a tangent to the curve $$y^2=\mathrm{p} x^3+\mathrm{q}$$ at $$(2,3)$$, then $$\mathrm{p}-\mathrm{q}$$ is

A
$$-$$5
B
5
C
9
D
$$-$$9
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The diagonal of a square is changing at the rate of $$0.5 \mathrm{~cm} / \mathrm{sec}$$. Then the rate of change of area when the area is $$400 \mathrm{~cm}^2$$ is equal to

A
$$20 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
B
$$10 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
C
$$\frac{1}{10 \sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
D
$$\frac{10}{\sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
MHT CET Subjects
EXAM MAP