1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$x_0$$ be the point of local minima of $$\mathrm{f}(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$$ where $$\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$$, then value of $$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$$ at $$x=x_0$$ is

A
15
B
$$-$$15
C
12
D
$$-$$12
2
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the curve be represented by $$x=2(\cos t+t \sin t), y=2(\sin t-t \cos t)$$. Then normal at any point '$$t$$' of the curve is at a distance of ______ units from the origin.

A
1
B
0
C
2
D
4
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{B} \equiv(0,3)$$ and $$\mathrm{C} \equiv(4,0)$$. The point $$\mathrm{A}$$ is moving on the line $$y=2 x$$ at the rate of 2 units/second. The area of $$\triangle \mathrm{ABC}$$ is increasing at the rate of

A
$$\frac{11}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
B
$$\frac{11}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
C
$$\frac{13}{\sqrt{5}}$$ (units)$$^2$$/ $$\mathrm{sec}$$
D
$$\frac{13}{5}$$ (units)$$^2$$/ $$\mathrm{sec}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $$f(x)=3 x^3-18 x^2+27 x-40$$ on the set $$\mathrm{S}=\left\{x \in \mathrm{R} / x^2+30 \leq 11 x\right\}$$ is

A
122
B
$$-$$122
C
$$-$$222
D
222
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12