1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \ldots \ldots \ldots \ldots \ldots . \infty}}}}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$2 y-1$
B
$\frac{1}{2 y-1}$
C
$\frac{y^2-x}{2 y^3-2 x y-1}$
D
$\quad{ }^{14} \mathrm{C}_6$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(1)=3, \mathrm{f}^{\prime}(1)=2$, then $\frac{\mathrm{d}}{\mathrm{dx}}\left\{\log \left[\mathrm{f}\left(\mathrm{e}^x+2 x\right)\right]\right\}$ at $x=0$ is

A
$\frac{2}{3}$
B
$\frac{3}{2}$
C
2
D
0
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $x^{\left(x^x\right)}$ is

A
$\quad x^{\left(x^x\right)}\left(x^x+1+\log x\right)$
B
$x^{\left(x^x\right)}\left(x^x+\log x\right)$
C
$x^{\left(x^x\right)}\left(x^x+x^{x-1} \log x(1+\log x)\right)$
D
$\quad x^{\left(x^x\right)}\left(x^{x-1}+x^x \log x(1+\log x)\right)$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For $N \in \mathbb{N}, \frac{\mathrm{~d}^{\mathrm{n}}}{\mathrm{d} x^{\mathrm{n}}}(\log x)=$

A
$\frac{(n-1)!}{x^n}$
B
$\frac{n!}{x^n}$
C
$\frac{(\mathrm{n}-2)!}{x^{\mathrm{n}}}$
D
$\quad(-1)^{n-1} \frac{(n-1)!}{x^n}$
MHT CET Subjects
EXAM MAP