1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\operatorname{acos}^3 \theta y=\operatorname{asin}^3 \theta$

Then $\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2}=$

A
$\tan ^2 \theta$
B
$\sec ^2 \theta$
C
$\sec \theta$
D
$\tan \theta$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^2\left(\cot ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
-1
B
1
C
$-\frac{1}{4}$
D
$\frac{1}{2}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\mathrm{a}^x \cdot \mathrm{~b}^{2 x-1}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ is equal to

A
$\quad y\left(\log \left(a b^2\right)\right)$
B
$\quad y^2\left(\log \left(a \mathrm{~b}^2\right)\right)$
C
$\quad y\left(\log \left(a b^2\right)\right)^2$
D
$\quad y^2(\log (a b))^2$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $(\mathrm{a}+\mathrm{b} x) \mathrm{e}^{\frac{y}{x}}=x$, then $x^3 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}$ is equal to

A
$\left(y \frac{\mathrm{~d} y}{\mathrm{~d} x}-x\right)^2$
B
$\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y\right)^2$
C
$\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)^2$
D
$\left(y \frac{\mathrm{~d} y}{\mathrm{~d} x}+x\right)^2$
MHT CET Subjects
EXAM MAP