1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log _{\mathrm{e}} x^3+3 \sin ^{-1} x+\mathrm{kx}^2$ and $y^{\prime}\left(\frac{1}{2}\right)=2 \sqrt{3}$, then $k=$

A
6
B
-6
C
$2 \sqrt{3}$
D
1
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of

$$ y=(1-x)(2-x) \ldots \ldots \ldots \ldots \ldots \ldots(\mathrm{n}-x) $$

at $x=1$ is

A
$(\mathrm{n}-1)$ !
B
$n!$
C
$(-1)(n-1)$ !
D
$(-n)(n-1)$ !
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The first derivative of the function $\left(\cos ^{-1}\left(\sin \sqrt{\frac{1+x}{2}}\right)+x^x\right)$ with respect to $x$ at $x=1$ is

A
$\frac{1}{4}$
B
$\frac{5}{4}$
C
$\frac{-1}{2}$
D
$\frac{3}{4}$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^{\frac{2}{5}}+y^{\frac{2}{5}}=\mathrm{a}^{\frac{2}{5}}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\sqrt[5]{\left(\frac{y}{x}\right)^3}$
B
$\quad-\sqrt[5]{\left(\frac{x}{y}\right)^3}$
C
$\sqrt[5]{\left(\frac{x}{y}\right)^3}$
D
$\quad-\sqrt[5]{\left(\frac{y}{x}\right)^3}$
MHT CET Subjects
EXAM MAP