1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^y+y^x=\mathrm{a}^{\mathrm{b}}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1, y=2$ is

A
$-2(1+\log 2)$
B
$\quad 2(1+\log 2)$
C
$2+\log 2$
D
$1+\log 2$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $u=\frac{\tan ^{-1} x}{\tan ^{-1} x+1}$ and $v=\tan ^{-1}\left(\tan ^{-1} x\right)$ then $\frac{d u}{d v}=$

A
1
B
$\frac{1+\left(\tan ^{-1} x\right)^2}{\left(1+\tan ^{-1} x\right)^2}$
C
$\frac{\tan ^{-1} x}{\left(1+\tan ^{-1} x\right)^2}$
D
$\frac{1}{\left(1+\tan ^{-1} x\right)^2}$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{y}=x^x+x^{\frac{1}{x}}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$x^x(1+\log x)+x^{\frac{1}{x}} \frac{1}{x^2}(1-\log x)$
B
$\left(x^x+x^{\frac{1}{x}}\right)\left[1+\log x+\frac{1}{x^2}(1-\log x)\right]$
C
$\left(x^x+x^{\frac{1}{x}}\right)\left[(1+\log x)-\frac{1}{x^2}(1-\log x)\right]$
D
$x^x(1+\log x)-x^{\frac{1}{x}} \frac{1}{x^2}(1-\log x)$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
9
B
12
C
15
D
33
MHT CET Subjects
EXAM MAP