1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \log x+b x^2+x$ has its extremum values at $x=-1$ and $x=2$, then

A
$\mathrm{a}=2, \mathrm{~b}=-1$
B
$\mathrm{a}=2, \mathrm{~b}=-\frac{1}{2}$
C
$\mathrm{a}=-2, \mathrm{~b}=\frac{1}{2}$
D
$\mathrm{a}=2, \mathrm{~b}=\frac{1}{2}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The set of all points, for which $f(x)=x^2 e^{-x}$ strictly increases, is

A
$(0,2)$
B
$(2, \infty)$
C
$(-2,0)$
D
$(-\infty, \infty)$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The abscissa of the point on the curve $y=\mathrm{a}\left(\mathrm{e}^{\frac{x}{a}}+\mathrm{e}^{-\frac{x}{a}}\right)$ where the tangent is parallel to the X -axis is

A
0
B
a
C
2a
D
$-$2a
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Number of values of C that satisfy the conclusion of Rolle's theorem in case of following function $\mathrm{f}(x)=\sin 2 \pi x, x \in[-1,1]$ is

A
02
B
04
C
03
D
zero
MHT CET Subjects
EXAM MAP