1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom, to contain 4000 cubic cm . of liquid, is to be constructed. The dimensions of the tank, so that the surface area of the tank is minimum, are

A
side of square bottom $=40 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
B
side of square bottom $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$.
C
side of square bottom $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$.
D
side of square bottom $=5 \mathrm{~cm}$, height $=160 \mathrm{~cm}$.
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=2 x^3-9 x^2+12 x+2$ is decreasing in

A
$1< x<2$
B
$x< 1$ or $x>2$
C
$x< -1$ or $x>-2$
D
$-2< x<-1$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of motion of a particle is $s=a t^2+b t+c$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} / \mathrm{sec}$ and the acceleration is $10 \mathrm{~m} / \mathrm{sec}^2$, then

A
$\mathrm{a}+\mathrm{c}=2 \mathrm{~b}$
B
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
C
$\mathrm{a}-\mathrm{c}=\mathrm{b}$
D
$\mathrm{a+c=3 b}$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x^3-10 x^2+200 x-10$, then

A
$\mathrm{f}(x)$ is decreasing in $(-\infty, 10]$ and increasing in $[10, \infty)$
B
$f(x)$ is increasing in $(-\infty, 10]$ and decreasing in $[10, \infty)$
C
$\mathrm{f}(x)$ is increasing throughout real line
D
$\mathrm{f}(x)$ is decreasing throughout real line
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12