Four combinations of two thin lenses are given in List I. The radius of curvature of all curved surfaces is r and the refractive index of all the lenses is 1.5. Match lens combinations in List I with their focal length in List II and select the correct answer using the code given below the lists.
A right-angled prism of refractive index $$\mu$$1 is placed in a rectangular block of refractive index $$\mu$$2, which is surrounded by a medium of refractive index $$\mu$$3, as shown in the figure. A ray of light e enters the rectangular block at normal incidence. Depending upon the relationships between $$\mu$$1, $$\mu$$2 and $$\mu$$3, it takes one of the four possible paths 'ef', 'eg', 'eh' or 'ei'.
Match the paths in List I with conditions of refractive indices in List II and select the correct answer using the codes given below the lists:
List I | List II | ||
---|---|---|---|
P. | $$e \to f$$ |
1. | $${\mu _1} > \sqrt 2 {\mu _2}$$ |
Q. | $$e \to g$$ |
2. | $${\mu _2} > {\mu _1}$$ and $${\mu _2} > {\mu _3}$$ |
R. | $$e \to h$$ |
3. | $${\mu _1} = {\mu _2}$$ |
S. | $$e \to i$$ |
4. | $${\mu _2} < {\mu _1} < \sqrt 2 {\mu _2}$$ and $${\mu _2} > {\mu _3}$$ |
A ray of light travelling in the direction $${1 \over 2}\left( {\widehat i + \sqrt 3 \widehat j} \right)$$ is incident on a plane mirror. After reflection, it travels along the direction $${1 \over 2}\left( {\widehat i - \sqrt 3 \widehat j} \right)$$. The angle of incidence is