1
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$\left(1+\log _e 2 x\right)^2 \frac{d y}{d x}$$ is equal to

A
$$\frac{x \log _{\mathrm{e}} 2 x+\log _{\mathrm{e}} 2}{x}$$
B
$$\frac{x \log _e 2 x-\log _e 2}{x}$$
C
$$x \log _{\mathrm{e}} 2 x+\frac{\log _{\mathrm{e}} 2}{x}$$
D
$$x \log _e 2 x-\frac{\log _e 2}{2}$$
2
MHT CET 2023 12th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\tan y=\frac{x \sin \alpha}{1-x \cos \alpha}$$ and $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{m}}{x^2+2 \mathrm{n} x+1}$$, then $$\mathrm{m}^2+\mathrm{n}^2$$ is

A
2
B
3
C
1
D
4
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $$\mathrm{f}(\tan x)$$ w.r.t. $$\mathrm{g}(\sec x)$$ at $$x=\frac{\pi}{4}$$ where $$\mathrm{f}^{\prime}(1)=2$$ and $$\mathrm{g}^{\prime}(\sqrt{2})=4$$ is

A
$$\frac{1}{\sqrt{2}}$$
B
$$\sqrt{2}$$
C
1
D
0
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$x=-1$$ and $$x=2$$ are extreme points of $$\mathrm{f}(x)=\alpha \log x+\beta x^2+x, \alpha$$ and $$\beta$$ are constants, then the value of $$\alpha^2+2 \beta$$ is

A
$$-3$$
B
3
C
$$\frac{3}{2}$$
D
5
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12