1
MHT CET 2023 10th May Morning Shift
+1
-0

For a satellite orbiting around the earth in a circular orbit, the ratio of potential energy to kinetic energy at same height is

A
$$\frac{1}{\sqrt{2}}$$
B
$$\frac{1}{2}$$
C
$$\sqrt{2}$$
D
2
2
MHT CET 2023 9th May Evening Shift
+1
-0

Periodic time of a satellite revolving above the earth's surface at a height equal to radius of the earth '$$R$$' is [ $$g=$$ acceleration due to gravity]

A
$$2 \pi \sqrt{\frac{2 R}{g}}$$
B
$$4 \pi \sqrt{\frac{2 R}{g}}$$
C
$$2 \pi \sqrt{\frac{R}{g}}$$
D
$$8 \pi \sqrt{\frac{\mathrm{R}}{\mathrm{g}}}$$
3
MHT CET 2023 9th May Evening Shift
+1
-0

Consider a planet whose density is same as that of the earth but whose radius is three times the radius '$$R$$' of the earth. The acceleration due to gravity '$$\mathrm{g}_{\mathrm{n}}$$' on the surface of planet is $$\mathrm{g}_{\mathrm{n}}=\mathrm{x}$$. $$\mathrm{g}$$ where $$\mathrm{g}$$ is acceleration due to gravity on surface of earth. The value of '$$\mathrm{x}$$' is

A
9
B
3
C
$$\frac{1}{3}$$
D
$$\frac{1}{9}$$
4
MHT CET 2023 9th May Morning Shift
+1
-0

A thin rod of length '$$L$$' is bent in the form of a circle. Its mass is '$$M$$'. What force will act on mass '$$m$$' placed at the centre of this circle?

( $$\mathrm{G}=$$ constant of gravitation)

A
zero
B
$$\frac{\mathrm{GMm}}{4 \mathrm{~L}^2 \pi^2}$$
C
$$\frac{4 \pi^2 \mathrm{GMm}}{\mathrm{L}}$$
D
$$\frac{2 \mathrm{GMm}}{\mathrm{L}^2}$$
EXAM MAP
Medical
NEET