1
MHT CET 2021 21th September Morning Shift
+1
-0

A particle of mass '$$m$$' is kept at rest at a height $$3 R$$ from the surface of earth, where '$$R$$' is radius of earth and '$$M$$' is the mass of earth. The minimum speed with which it should be projected, so that it does not return back is ( $$g=$$ acceleration due to gravity on the earth's surface)

A
$$\left[\frac{\mathrm{GM}}{2 \mathrm{R}}\right]^{1 / 2}$$
B
$$\left[\frac{\mathrm{gR}}{4}\right]^{1 / 2}$$
C
$$\left[\frac{2 \mathrm{~g}}{\mathrm{R}}\right]^{1 / 2}$$
D
$$\left[\frac{\mathrm{GM}}{\mathrm{R}}\right]^{1 / 2}$$
2
MHT CET 2021 20th September Evening Shift
+1
-0

A body is projected from earth's surface with thrice the escape velocity from the surface of the earth. What will be its velocity when it will escape the gravitational pull?

A
$$2 \mathrm{~V}_{\mathrm{e}}$$
B
$$4 \mathrm{~V}_{\mathrm{e}}$$
C
$$2 \sqrt{2} \mathrm{~V}_{\mathrm{e}}$$
D
$$\frac{\mathrm{V}_{\mathrm{e}}}{2}$$
3
MHT CET 2021 20th September Evening Shift
+1
-0

The depth at which acceleration due to gravity becomes $$\frac{\mathrm{g}}{\mathrm{n}}$$ is [ $$\mathrm{R}$$ = radius of earth, $$\mathrm{g}=$$ acceleration due to gravity, $$\mathrm{n}=$$ integer $$]$$

A
$$\frac{\mathrm{R}(\mathrm{n}-1)}{\mathrm{n}}$$
B
$$\frac{(\mathrm{n}-1)}{\mathrm{nR}}$$
C
$$\frac{\mathrm{Rn}}{(\mathrm{n}-1)}$$
D
$$\frac{\mathrm{n}}{\mathrm{R}(\mathrm{n}-1)}$$
4
MHT CET 2021 20th September Morning Shift
+1
-0

The depth 'd' below the surface of the earth where the value of acceleration due to gravity becomes $$\left(\frac{1}{n}\right)$$ times the value at the surface of the earth is $$(R=$$ radius of the earth)

A
$$\mathrm{R}\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)$$
B
$$R\left(\frac{n}{n+1}\right)$$
C
$$\frac{R}{n}$$
D
$$\frac{\mathrm{R}}{\mathrm{n}^2}$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination