1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A body starts from rest from a distance $\mathrm{R}_0$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be ( $R=$ radius of earth, $M=$ mass of earth)

A
$2 \mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)$
B
$\sqrt{2 \mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)}$
C
$\mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)$
D
$2 \mathrm{GM} \sqrt{\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The radius and mean density of the planet are four times as that of the earth. The ratio of escape velocity at the earth to the escape velocity at a planet is

A
$1: \sqrt{8}$
B
$1: 8$
C
$1: \sqrt{3}$
D
$1: 3$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A small planet is revolving around a very massive star in a circular orbit of radius ' $R$ ' with a period of revolution ' $T$ '. If the gravitational force between the planet and the star were proportional to '$R^{-5 / 2}$', then '$T$' would be proportional to

A
$\mathrm{R}^{3 / 2}$
B
$\mathrm{R}^{3 / 5}$
C
$\mathrm{R}^{7 / 2}$
D
$\mathrm{R}^{7 / 4}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A satellite is revolving around a planet in a circular orbit close to its surface. Let ' $\rho$ ' be the mean density and ' $R$ ' be the radius of the planet. Then the period of the satellite is ( $\mathrm{G}=$ universal constant of gravitation)

A
$\sqrt{\frac{4 \pi}{\rho G}}$
B
$\sqrt{\frac{\pi}{\rho G}}$
C
$\sqrt{\frac{3 \pi}{\rho G}}$
D
$\sqrt{\frac{2 \pi}{\rho G}}$
MHT CET Subjects
EXAM MAP