1
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$
The system is
2
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$
The response $$y(t)$$ to a unit step input is
3
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an $$LTI$$ system is given by
$$$\left( {\matrix{
{\mathop {{x_1}}\limits^ \bullet } \cr
{\mathop {{x_2}}\limits^ \bullet } \cr
{\mathop {{x_3}}\limits^ \bullet } \cr
} } \right) = \left( {\matrix{
0 & {{a_1}} & 0 \cr
0 & 0 & {{a_2}} \cr
{{a_3}} & 0 & 0 \cr
} } \right)\left( {\matrix{
{{x_1}} \cr
{{x_2}} \cr
{{x_3}} \cr
} } \right) + \left( {\matrix{
0 \cr
0 \cr
1 \cr
} } \right)u,$$$
$$$y = \left( {\matrix{
1 & 0 & 0 \cr
} } \right)\left( {\matrix{
{{x_1}} \cr
{{x_2}} \cr
{{x_3}} \cr
} } \right)$$$
where $$y$$ is the output and $$u$$ is the input. The system is controllable for
4
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
The system $$\mathop X\limits^ \bullet = AX + BU$$ with $$A = \left[ {\matrix{
{ - 1} & 2 \cr
0 & 2 \cr
} } \right],$$ $$B = \left[ {\matrix{
0 \cr
1 \cr
} } \right]$$ is
Questions Asked from State Variable Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2023 (1)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2016 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 3 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2013 (2)
GATE EE 2012 (1)
GATE EE 2010 (1)
GATE EE 2009 (2)
GATE EE 2008 (2)
GATE EE 2005 (2)
GATE EE 2004 (1)
GATE EE 2003 (1)
GATE EE 2002 (2)
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics