1
GATE EE 2023
Numerical
+2
-0.67

Consider the state-space description of an LTI system with matrices

$$A = \left[ {\matrix{ 0 & 1 \cr { - 1} & { - 2} \cr } } \right],B = \left[ {\matrix{ 0 \cr 1 \cr } } \right],C = \left[ {\matrix{ 3 & { - 2} \cr } } \right],D = 1$$

For the input, $$\sin (\omega t),\omega > 0$$, the value of $$\omega$$ for which the steady-state output of the system will be zero, is ___________ (Round off to the nearest integer).

Your input ____
2
GATE EE 2017 Set 2
Numerical
+2
-0
Consider the system described by the following state space representation
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$

If $$u(t)$$ is a unit step input and $$\left[ {\matrix{ {{x_1}\left( 0 \right)} \cr {{x_2}\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right],$$ the value of output $$y(t)$$ at $$t=1$$ sec (rounded off to three decimal places) is _____________.

Your input ____
3
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system $$Y\left( s \right)/U\left( s \right)$$ , whose state-space equations are given below is:
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 1 & 2 \cr 2 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 1 \cr 2 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$
A
$${{\left( {s + 2} \right)} \over {\left( {{s^2} - 2s - 2} \right)}}$$
B
$${{\left( {s + 2} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
C
$${{\left( {s - 4} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
D
$${{\left( {s + 4} \right)} \over {\left( {{s^2} - s - 4} \right)}}$$
4
GATE EE 2016 Set 1
Numerical
+2
-0
Consider the following state - space representation of a linear time-invariant system.
$$\mathop x\limits^ \bullet \left( t \right) = \left[ {\matrix{ 1 & 0 \cr 0 & 2 \cr } } \right]\,\,x\left( t \right),\,\,y\left( t \right) = {c^T}x\left( t \right),\,c = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$ and
$$x\left( 0 \right) = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$

The value of $$y(t)$$ for $$t\,\,\, = \,\,{\log _e}2$$ ___________.

Your input ____
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12