1
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has
The state transition matrix
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
A state variable system
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has
$$\mathop X\limits^ \bullet \left( t \right) = \left( {\matrix{ 0 & 1 \cr 0 & { - 3} \cr } } \right)X\left( t \right) + \left( {\matrix{ 1 \cr 0 \cr } } \right)u\left( t \right)$$ with the initial condition $$X\left( 0 \right) = {\left[ { - 1\,\,3} \right]^T}$$ and the unit step input $$u(t)$$ has
The state transition equation
3
GATE EE 2004
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of a linear autonomous system is, $$\mathop X\limits^ \bullet = AX,\,\,$$ where $$X$$ is the two dimensional state vector and $$A$$ is the system matrix given by $$A = \left[ {\matrix{
0 & 2 \cr
2 & 0 \cr
} } \right].$$ The roots of the characteristic equation are
4
GATE EE 2003
MCQ (Single Correct Answer)
+2
-0.6
The following equation defines a separately exited $$dc$$ motor in the form of a differential equation $${{{d^2}\omega } \over {d{t^2}}} + {{B\,d\omega } \over {j\,\,dt}} + {{{K^2}} \over {LJ}}\omega = {K \over {LJ}}{V_a}$$
The above equation may be organized in the state space form as follows
$$\left( {\matrix{
{{{{d^2}\omega } \over {d{t^2}}}} \cr
{{{d\omega } \over {dt}}} \cr
} } \right) = P\left( {\matrix{
{{{d\omega } \over {dt}}} \cr
\omega \cr
} } \right) + Q{V_a}$$
where the $$P$$ matrix is given by
Questions Asked from State Variable Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2023 (1)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2016 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2014 Set 3 (1)
GATE EE 2013 (2)
GATE EE 2012 (1)
GATE EE 2010 (1)
GATE EE 2009 (2)
GATE EE 2008 (2)
GATE EE 2005 (2)
GATE EE 2004 (1)
GATE EE 2003 (1)
GATE EE 2002 (2)
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits