Marks 1
For an ideal MOSFET biased in saturation, the magnitude of the small signal current gain for a common drain amplifier is


Marks 2
Marks 5

$$(a)$$ Determine the AC small signal midband voltage gain $$\left( {{\raise0.5ex\hbox{$\scriptstyle {{V_o}}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {{V_i}}$}}} \right)$$ of the circuit
$$(b)$$ Determine the required value of $${C_E}$$ for the circuit to have a lower cutoff frequency of $$10Hz$$

$$(a)$$ $$\,\,\,\,\,\,\,\,$$ Quiescent collector current $${{\rm I}_{CQ}}$$
$$(b)$$ $$\,\,\,\,\,\,\,\,$$ Small signal voltage gain $${{{V_o}} \over {{V_i}}}$$
$$(c)$$ $$\,\,\,\,\,\,\,\,$$ Max. possible swing of the collector current.
$$(i)$$ Draw the $$AC$$ equivalent circuit
$$(ii)$$ Find the voltage gain of the amp



$$(a)$$ Simplify the circuit by applying thevenin's theorem to biasing network $${R_1},{R_2}$$ at
$$\,\,\,\,\,\,\,$$ the base of the transistor.
$$(b)$$ Assuming $${C_s}$$ to be a short for frequency range considered. Draw the small signal
$$\,\,\,\,\,\,\,$$ $$a.c.$$ model of the circuit obtained in $$(a)$$ by using the simple model for the
$$\,\,\,\,\,\,\,$$ transistor shown in figure.
$$(c)$$ Evaluate the small signal gain $$\left( {{{{V_0}} \over {{V_i}}}} \right)$$ of the amplifier.