1
GATE EE 2024
Numerical
+2
-0
Consider the closed-loop system shown in the figure with $$G(s) = \frac{K(s^2 - 2s + 2)}{(s^2 + 2s + 5)}.$$ The root locus for the closed-loop system is to be drawn for $0 \leq K < \infty$. The angle of departure (between $0^{o}$ and $360^{o})$ of the root locus branch drawn from the pole $(−1 + j2)$, in degrees, is _________________ (rounded off to the nearest integer).
Your input ____
2
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The root locus of the feedback control system having the characteristic equation $${s^2} + 6Ks + 2s + 5 = 0$$ where $$K>0,$$ enters into the real axis at
3
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
An open loop transfer function $$G(s)$$ of system is $$G\left( s \right) = {k \over {s\left( {s + 1} \right)\left( {s + 2} \right)}}$$
For a unity feedback system, the breakaway point of the root loci on the real axis occurs at,
4
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The open loop transfer function $$G(s)$$ of a unity feedback control system is given as, $$G\left( s \right) = {{k\left( {s + {2 \over 3}} \right)} \over {{s^2}\left( {s + 2} \right)}}.\,\,$$ From the root locus, it can be inferred that when $$k$$ tends to positive infinity
Questions Asked from Root Locus Techniques (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics