Power Generation Cost · Power System Analysis · GATE EE

Start Practice

Marks 1

Marks 2

1

The fuel cost functions in rupees/hour for two 600 MW thermal power plants are given by

Plant 1 : C1 = 350 + 6P1 + 0.004P$$_1^2$$

Plant 2 : C2 = 450 + aP2 + 0.003P$$_2^2$$

where P1 and P2 are power generated by plant 1 and plant 2, respectively, in MW and a is constant. The incremental cost of power ($$\lambda$$) is 8 rupees per MWh. The two thermal power plants together meet a total power demand of 550 MW. The optimal generation of plant 1 and plant 2 in MW, respectively, are

GATE EE 2022
2
Consider the economic dispatch problem for a power plant having two generating units. The fuel costs in $$Rs/MWh$$ along with the generation limits for the two units are given below:
$$\eqalign{ & {C_1}\left( {{P_1}} \right) = 0.01\,P_1^2 + 30{P_1} + 10; \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,100\,MW \le {P_1} \le 150\,MW \cr} $$
$$\eqalign{ & {C_2}\left( {{P_2}} \right) = 0.05\,P_2^2 + 10{P_2} + 10; \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,100\,MW \le {P_2} \le 180\,MW \cr} $$

The incremental cost (in $$Rs/MWh$$) of the power plant when it supplies $$200$$ $$MW$$ is __________.

GATE EE 2015 Set 1
3
The incremental costs (in rupees/$$MWh$$) of operating two generating units are functions of their respective powers $${P_1}$$ and $${P_2}$$ in $$MW,$$ and are given by $$${{d{C_1}} \over {d{P_1}}} = 0.2{P_1} + 50$$$ $$${{d{C_2}} \over {d{P_2}}} = 0.24{P_2} + 40$$$
Where, $$$\eqalign{ & 20\,MW \le {P_1} \le 150\,MW \cr & 20\,MW \le {P_2} \le 150MW. \cr} $$$
For a certain load demand, $${P_1}$$ and $${P_2}$$ have been chosen such that $$\,\,d{C_1}/d{P_1} = 76\,Rs/MWh\,\,$$ and $$\,d{C_2}/d{P_2} = 68.8\,Rs/MWh.\,\,$$ If the generations are rescheduled to minimize the total cost, then $${P_2}$$ is ____________.
GATE EE 2015 Set 2
4
The fuel cost functions of two power plants are
Plant $${P_1}:\,{C_1} = 0.05\,Pg_1^2 + AP{g_1} + B$$
Plant $${P_2}:\,{C_2} = 0.10\,Pg_2^2 + 3AP{g_2} + 2B$$
Where, $$P{g_1}$$ and $$P{g_2}$$ are the generator powers of two plants and $$A$$ and $$B$$ are the constants. If the two plants optimally share $$1000$$ $$MW$$ load at incremental fuel cost of $$100$$ $$Rs/MWh,$$ the ratio of load shared by plants $${P_1}$$ and $${P_2}$$ is
GATE EE 2014 Set 1
5
A load center of 120 MW derives power from two power stations connected by 220 kV transmission lines of 25 km and 75 km as shown in the figure below. The three generators G1,G2 and G3 are of 100 MW capacity each and have identical fuel cost characteristics. The minimum loss generation schedule for supplying the 120 MW load is GATE EE 2011 Power System Analysis - Power Generation Cost Question 9 English
GATE EE 2011
6
Three generators are feeding a load of $$100$$ $$MW$$. The details of the generators Rating, Efficiency and Regulation are shown below GATE EE 2009 Power System Analysis - Power Generation Cost Question 10 English

In the event of increased load power demand, which of the following will happen?

GATE EE 2009
7
A lossless power system has to serve a load of $$250$$ $$MW.$$ There are two generators ($$G1$$ and $$G2$$) in the system with cost curves $${C_1}$$ and $${C_2}$$ respectively defined as follows:
$${C_1}\left( {{P_{G1}}} \right) = {P_{G1}} + 0.055 \times P_{G1}^2$$
$${C_2}\left( {{P_{G2}}} \right) = 3{P_{G2}} + 0.03 \times P_{G2}^2$$
Where $${P_{G1}}$$ and $${P_{G2}}$$ are the MW injections from generator $${G_1}$$ and $${G_2}$$ respectively. Thus, the minimum cost dispatch will be
GATE EE 2008
8
A load centre is at an equidistant from the two thermal generating stations $${G_1}$$ and $${G_2}$$ as shown in figure. The fuel cost characteristics of the generating stations are given by
$${F_1} = a + b{P_1} + cP_1^2\,Rs/hour$$
$${F_2} = a + b{P_2} + 2cP_2^2\,Rs/hour$$ GATE EE 2005 Power System Analysis - Power Generation Cost Question 12 English

Where $${P_1}$$ and $${P_2}$$ are the generations in $$MW$$ of $${G_1}$$and $${G_2}$$, respectively. For most economic generation to meet $$300MW$$ of load $${P_1}$$ and $${P_2},$$ respectively, are

GATE EE 2005
9
Incremental fuel costs (in some appropriate unit) for a power plant consisting of three generating units are
$${\rm I}{C_1} = 20 + 0.3\,\,{P_1},\,{\rm I}{C_2} = 30 + 0.4\,\,{P_2},\,{\rm I}{C_3} = 30$$
Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are $$50$$ $$MW$$ and $$300$$ $$MW$$ respectively. If the plant is operating on economic load dispatch to supply the total power demand of $$700$$ $$MW$$, the power generated by each unit is
GATE EE 2003
10
The incremental cost characteristic of two generators delivering $$200$$ $$MW$$ are as follows $$\,\,\,{{d{F_1}} \over {d{P_1}}} = 20 + 0.1{P_1},\,\,{{d{F_2}} \over {d{P_2}}} = 16 + 0.2{P_2}$$
For economic operation, the generations $${P_1}$$ and $${P_2}$$ should be
GATE EE 2000
11
An industrial consumer has a daily load pattern of $$2000$$ $$kW$$, $$0.8$$ lag for $$12$$ Hrs. and $$1000$$ $$kW$$ $$UPF$$ for $$12$$ Hrs. The load factor is
GATE EE 1999

Marks 5

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12