1
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the system described by the following state space equations $$$\eqalign{ & \left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr { - 1} & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u; \cr & y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] \cr} $$$

If $$u$$ unit step input, then the steady state error of the system is

A
$$0$$
B
$$1/2$$
C
$$2/3$$
D
$$1$$
2
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$

The system is

A
controllable but not observable
B
not controllable but obserable
C
both controllable and observable
D
both not controllable and not Observable
3
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$

The response $$y(t)$$ to a unit step input is

A
$${1 \over 2} - {1 \over 2}{e^{ - 2t}}$$
B
$$1 - {1 \over 2}{e^{ - 2t}} - {1 \over 2}{e^{ - t}}$$
C
$${e^{ - 2t}} - {e^{ - t}}$$
D
$$1 - {e^{ - t}}$$
4
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an $$LTI$$ system is given by $$$\left( {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right) = \left( {\matrix{ 0 & {{a_1}} & 0 \cr 0 & 0 & {{a_2}} \cr {{a_3}} & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right) + \left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)u,$$$ $$$y = \left( {\matrix{ 1 & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right)$$$

where $$y$$ is the output and $$u$$ is the input. The system is controllable for

A
$${a_1} \ne 0,\,\,{a_2} = 0,\,\,{a_3} \ne 0$$
B
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} \ne 0$$
C
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
D
$${a_1} \ne 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12