Vector Calculus · Engineering Mathematics · GATE EE

Start Practice

Marks 1

Marks 2

1

Consider a vector $\vec{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where $\hat{x}$, $\hat{y}$, $\hat{z}$ represent unit vectors along the coordinate axes $x$, $y$, $z$ respectively. The directional derivative of the function $f(x, y, z) = 2\ln(xy) + \ln(yz) + 3\ln(xz)$ at the point $(x, y, z) = (1, 1, 1)$ in the direction of $\vec{u}$ is

GATE EE 2024
2

Let $$f(x,y,z) = 4{x^2} + 7xy + 3x{z^2}$$. The direction in which the function f(x, y, z) increases most rapidly at point P = (1, 0, 2) is

GATE EE 2022
3

Let $$\overrightarrow E (x,y,z) = 2{x^2}\widehat i + 5y\widehat j + 3z\widehat k$$. The value of $$\mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} {(\overrightarrow \nabla \,.\,\overrightarrow E )dV} $$, where V is the volume enclosed by the unit cube defined by 0 $$\le$$ x $$\le$$ 1, 0 $$\le$$ y $$\le$$ 1, and 0 $$\le$$ z $$\le$$ 1, is

GATE EE 2022
4
The line integral of the vector field $$\,\,F = 5xz\widehat i + \left( {3{x^2} + 2y} \right)\widehat j + {x^2}z\widehat k\,\,$$ along a path from $$(0, 0, 0)$$ to $$(1,1,1)$$ parameterized by $$\left( {t,{t^2},t} \right)$$ is _________.
GATE EE 2016 Set 2
5
Match the following.

List-$${\rm I}$$
$$P.$$ Stoke's Theorem
$$Q.$$ Gauss's Theorem
$$R.$$ Divergence Theorem
$$S.$$ Cauchy's Integral Theorem

List-$${\rm I}{\rm I}$$
$$1.$$ GATE EE 2015 Set 2 Engineering Mathematics - Vector Calculus Question 6 English 1
$$2.$$ GATE EE 2015 Set 2 Engineering Mathematics - Vector Calculus Question 6 English 2
$$3.$$ GATE EE 2015 Set 2 Engineering Mathematics - Vector Calculus Question 6 English 3
$$4.$$ GATE EE 2015 Set 2 Engineering Mathematics - Vector Calculus Question 6 English 4

GATE EE 2015 Set 2
6
Given a vector field $$\overrightarrow F = {y^2}x\widehat a{}_x - yz\widehat a{}_y - {x^2}\widehat a{}_z,$$ the line integral $$\int {F.dl} $$ evaluated along a segment on the $$x-$$axis from $$x=1$$ to $$x=2$$ is
GATE EE 2013
7
The curl of the gradient of the scalar field defined by $$\,V = 2{x^2}y + 3{y^2}z + 4{z^2}x$$ is
GATE EE 2013
8
The direction of vector $$A$$ is radially outward from the origin, with $$\left| A \right| = K\,{r^n}$$ where $${r^2} = {x^2} + {y^2} + {z^2}$$ and $$K$$ is constant. The value of $$n$$ for which $$\nabla .A = 0\,\,$$ is
GATE EE 2012
9
$$F\left( {x,y} \right) = \left( {{x^2} + xy} \right)\,\widehat a{}_x + \left( {{y^2} + xy} \right)\,\widehat a{}_y.\,\,$$ Its line integral over the straight line from $$(x, y)=(0,2)$$ to $$(x,y)=(2,0)$$ evaluates to
GATE EE 2009
10
for the scalar field $$u = {{{x^2}} \over 2} + {{{y^2}} \over 3},\,\,$$ the magnitude of the gradient at the point $$(1,3)$$ is
GATE EE 2005
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12