1
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
The system $$\mathop X\limits^ \bullet = AX + BU$$ with $$A = \left[ {\matrix{ { - 1} & 2 \cr 0 & 2 \cr } } \right],$$ $$B = \left[ {\matrix{ 0 \cr 1 \cr } } \right]$$ is
A
stable and controllable
B
stable but uncontrollable
C
unstable but controllable
D
unstable and uncontrollable
2
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The state $$-$$ transition matrix of the above system is

A
$$\left( {\matrix{ {{e^{ - 3t}}} & 0 \cr {{e^{ - 2t}} + {e^{ - 3t}}} & {{e^{ - 2t}}} \cr } } \right)$$
B
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
C
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} + {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
D
$$\left( {\matrix{ {{e^{3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
3
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The system transfer function is

A
$${{s + 2} \over {{s^2} + 5s - 6}}$$
B
$${{s + 3} \over {{s^2} + 5s + 6}}$$
C
$${{2s + 5} \over {{s^2} + 5s + 6}}$$
D
$${{2s - 5} \over {{s^2} + 5s + 6}}$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
The state space equation of a system is described by $$\mathop X\limits^ \bullet = AX + BU,\,\,Y = Cx$$ where $$X$$ is state vector, $$U$$ is input, $$Y$$ is output and $$$A = \left( {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right)\,\,B = \left( {\matrix{ 0 \cr 1 \cr } } \right)\,\,C = \left[ {\matrix{ 1 & 0 \cr } } \right]$$$

The transfer function $$G(s)$$ of this system will be

A
$${s \over {\left( {s + 2} \right)}}$$
B
$${{s + 1} \over {s\left( {s - 2} \right)}}$$
C
$${s \over {\left( {s - 2} \right)}}$$
D
$${1 \over {s\left( {s + 2} \right)}}$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12