NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

GATE EE 2010

MCQ (Single Correct Answer)
The system $$\mathop X\limits^ \bullet = AX + BU$$ with $$A = \left[ {\matrix{ { - 1} & 2 \cr 0 & 2 \cr } } \right],$$ $$B = \left[ {\matrix{ 0 \cr 1 \cr } } \right]$$ is
A
stable and controllable
B
stable but uncontrollable
C
unstable but controllable
D
unstable and uncontrollable
2

GATE EE 2009

MCQ (Single Correct Answer)
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The state $$-$$ transition matrix of the above system is

A
$$\left( {\matrix{ {{e^{ - 3t}}} & 0 \cr {{e^{ - 2t}} + {e^{ - 3t}}} & {{e^{ - 2t}}} \cr } } \right)$$
B
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
C
$$\left( {\matrix{ {{e^{ - 3t}}} & {{e^{ - 2t}} + {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
D
$$\left( {\matrix{ {{e^{3t}}} & {{e^{ - 2t}} - {e^{ - 3t}}} \cr 0 & {{e^{ - 2t}}} \cr } } \right)$$
3

GATE EE 2009

MCQ (Single Correct Answer)
A system is described by the following state and output equations $$${{d{x_1}\left( t \right)} \over {dt}} = - 3{x_1}\left( t \right) + {x_2}\left( t \right) + 2u\left( t \right)$$$ $$${{d{x_2}\left( t \right)} \over {dt}} = - 2{x_2}\left( t \right) + u\left( t \right)$$$

$$y\left( t \right) = {x_1}\left( t \right)$$ when $$u(t)$$ is the input and $$y(t)$$ is the output

The system transfer function is

A
$${{s + 2} \over {{s^2} + 5s - 6}}$$
B
$${{s + 3} \over {{s^2} + 5s + 6}}$$
C
$${{2s + 5} \over {{s^2} + 5s + 6}}$$
D
$${{2s - 5} \over {{s^2} + 5s + 6}}$$
4

GATE EE 2008

MCQ (Single Correct Answer)
The state space equation of a system is described by $$\mathop X\limits^ \bullet = AX + BU,\,\,Y = Cx$$ where $$X$$ is state vector, $$U$$ is input, $$Y$$ is output and $$$A = \left( {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right)\,\,B = \left( {\matrix{ 0 \cr 1 \cr } } \right)\,\,C = \left[ {\matrix{ 1 & 0 \cr } } \right]$$$

A unity feedback is provided to the above system $$G(s)$$ to make it a closed loop system as shown in figure.

For a unit step input $$r(t),$$ the steady state error in the input will be

A
$$0$$
B
$$1$$
C
$$2$$
D
$$\infty $$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12