Feedback Amplifiers and Oscillator Circuits · Analog Electronics · GATE EE
Marks 1




List - $${\rm I}$$
$$A.$$ Capacitor $${C_1}$$ is open
$$B.$$ Capacitor $${C_3}$$ is open
$$C.$$ Capacitor $${C_4}$$ is open
$$D.$$ $$R{C_2}$$ is shorted
List - $${\rm II}$$
$$P.$$ All $$dc$$ voltages normal, $${V_0}$$ increases marginally
$$Q.$$ Collector of $$T{R_2}$$ at $${V_{cc}},\,\,{V_0} = 0$$
$$R.$$ All $$dc$$ voltages normal, gain of $${2^{nd}}$$ stage decreases, $${V_0}$$ decreases.
$$S.$$ All $$dc$$ voltage normal, $${V_0} = 0$$
$$T.$$ All $$dc$$ voltages normal, overall gain of the amplifier increases, $${V_0}$$ increase
$$U.$$ No change

Marks 2

The duration for $$+ve$$ part of the cycle $$\Delta {t_1}$$ and for $$-ve$$ part is $$\Delta {t_2}.$$ The value of $$e$$ $${{\Delta {t_2} - \Delta {t_1}} \over {RC}}$$ will be _______.

Marks 5


The network is used as a feedback circuit in an oscillator circuit shown in figure $$(2)$$ to generate sinusoidal oscillations. Assuming that the operational amplifier is ideal, determine the value of $${R_F}$$ for generating these oscillations. Also determine the oscillation frequency if $$R = 10\,\,k\Omega $$ and $$C=100PF$$

