NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### GATE EE 2014 Set 2

The second order dynamic system $${{dX} \over {dt}} = PX + Qu,\,\,\,y = RX$$ has the matrices $$P,Q,$$ and $$R$$ as follows: $$P = \left[ {\matrix{ { - 1} & 1 \cr 0 & { - 3} \cr } } \right]\,\,Q = \left[ {\matrix{ 0 \cr 1 \cr } } \right]$$
$$R = \left[ {\matrix{ 0 & 1 \cr } } \right]$$ The system has the following controllability and observability properties:
A
Controllable and observable
B
Not controllable but observable
C
Controllable but not observable
D
Not controllable and not observable
2

### GATE EE 2013

The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$

The response $$y(t)$$ to a unit step input is

A
$${1 \over 2} - {1 \over 2}{e^{ - 2t}}$$
B
$$1 - {1 \over 2}{e^{ - 2t}} - {1 \over 2}{e^{ - t}}$$
C
$${e^{ - 2t}} - {e^{ - t}}$$
D
$$1 - {e^{ - t}}$$
3

### GATE EE 2013

The state variable formulation of a system is given as
$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u,\,\,{x_1}\left( 0 \right) = 0,$$
$${x_2}\left( 0 \right) = 0$$ and $$y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$

The system is

A
controllable but not observable
B
not controllable but obserable
C
both controllable and observable
D
both not controllable and not Observable
4

### GATE EE 2012

The state variable description of an $$LTI$$ system is given by $$\left( {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right) = \left( {\matrix{ 0 & {{a_1}} & 0 \cr 0 & 0 & {{a_2}} \cr {{a_3}} & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right) + \left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)u,$$$$$y = \left( {\matrix{ 1 & 0 & 0 \cr } } \right)\left( {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right)$$$

where $$y$$ is the output and $$u$$ is the input. The system is controllable for

A
$${a_1} \ne 0,\,\,{a_2} = 0,\,\,{a_3} \ne 0$$
B
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} \ne 0$$
C
$${a_1} = 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
D
$${a_1} \ne 0,\,\,{a_2} \ne 0,\,\,{a_3} = 0$$
Write for Us

Do you want to write for us? Help us by contributing to our platform.

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12