NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

GATE EE 2003

MCQ (Single Correct Answer)
The following equation defines a separately exited $$dc$$ motor in the form of a differential equation $${{{d^2}\omega } \over {d{t^2}}} + {{B\,d\omega } \over {j\,\,dt}} + {{{K^2}} \over {LJ}}\omega = {K \over {LJ}}{V_a}$$

The above equation may be organized in the state space form as follows
$$\left( {\matrix{ {{{{d^2}\omega } \over {d{t^2}}}} \cr {{{d\omega } \over {dt}}} \cr } } \right) = P\left( {\matrix{ {{{d\omega } \over {dt}}} \cr \omega \cr } } \right) + Q{V_a}$$

where the $$P$$ matrix is given by

A
$$\left( {\matrix{ { - {B \over J}} & { - {{{K^2}} \over {LJ}}} \cr 1 & 0 \cr } } \right)$$
B
$$\left( {\matrix{ { - {{{K^2}} \over {LJ}}} & { - {B \over J}} \cr 0 & 1 \cr } } \right)$$
C
$$\left( {\matrix{ 0 & 1 \cr { - {{{K^2}} \over {LJ}}} & { - {B \over J}} \cr } } \right)$$
D
$$\left( {\matrix{ 1 & 0 \cr { - {B \over J}} & { - {{{K^2}} \over {LJ}}} \cr } } \right)$$
2

GATE EE 2002

MCQ (Single Correct Answer)
For the system $$\mathop X\limits^ \bullet = \left[ {\matrix{ 2 & 0 \cr 0 & 4 \cr } } \right]X + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\,\,\,y = \left[ {\matrix{ 4 & 0 \cr } } \right]X,\,$$ with u as unit impulse and with zero initial state, the output, $$y$$, becomes
A
$$2{e^{2t}}$$
B
$$4{e^{2t}}$$
C
$$2{e^{4t}}$$
D
$$4{e^{4t}}$$
3

GATE EE 2002

MCQ (Single Correct Answer)
For the system $$X = \left[ {\matrix{ 2 & 3 \cr 0 & 5 \cr } } \right]X + \left[ {\matrix{ 1 \cr 0 \cr } } \right]u,$$ Which of the following statement is true?
A
The system is controllable but unstable
B
The system is uncontrollable and unstable
C
The system is controllable and stable
D
The system is uncontrollable and stable

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12