Linear Algebra · Engineering Mathematics · GATE EE

Start Practice

Marks 1

GATE EE 2024
Which one of the following matrices has an inverse?
GATE EE 2024
The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2$ is ______ (rounded off to the nearest integer).
GATE EE 2023
For a given vector $${[\matrix{ 1 & 2 & 3 \cr } ]^T}$$, the vector normal to the plane defined by $${w^T}x = 1$$ is
GATE EE 2023
In the figure, the vectors u and v are related as : Au = v by a transformation matrix A. The correct choice of A is ...
GATE EE 2022
Consider a 3 $$\times$$ 3 matrix A whose (i, j)-th element, ai,j = (i $$-$$ j)3. Then the matrix A will be
GATE EE 2017 Set 1
The matrix $$A = \left[ {\matrix{ {{3 \over 2}} & 0 & {{1 \over 2}} \cr 0 & { - 1} & 0 \cr {{1 \over 2}} & 0 & {{...
GATE EE 2016 Set 2
$$A$$ $$3 \times 3$$ matrix $$P$$ is such that , $${p^3} = P.$$ Then the eigen values of $$P$$ are
GATE EE 2016 Set 1
Consider $$3 \times 3$$ matrix with every element being equal to $$1.$$ Its only non-zero eigenvalue is __________.
GATE EE 2015 Set 1
If the sum of the diagonal elements of a $$2 \times 2$$ matrix is $$-6$$, then the maximum possible value of determinant of the matrix is ____________...
GATE EE 2015 Set 2
We have a set of $$3$$ linear equations in $$3$$ unknown. $$'X \equiv Y'$$ means $$X$$ and $$Y$$ are equivalent statements and $$'X \ne Y'$$ means $$X...
GATE EE 2014 Set 2
Which one of the following statements is true for all real symmetric matrices?
GATE EE 2014 Set 1
Given a system of equations $$$x + 2y + 2z = {b_1}$$$ $$$5x + y + 3z = {b_2}$$$ Which of the following is true its solutions
GATE EE 2012
Given that $$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$ and $${\rm I} = \left[ {\matrix{ 1 & 0 \cr ...
GATE EE 2010
An eigen vector of $$p = \left[ {\matrix{ 1 & 1 & 0 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$ is
GATE EE 2009
The trace and determinant of a $$2 \times 2$$ matrix are shown to be $$-2$$ and $$-35$$ respectively. Its eigen values are
GATE EE 2008
The characteristic equation of a $$3\,\, \times \,\,3$$ matrix $$P$$ is defined as $$\alpha \left( \lambda \right) = \left| {\lambda {\rm I} - P} \r...
GATE EE 2008
$$A$$ is $$m$$ $$x$$ $$n$$ full rank matrix with $$m > n$$ and $${\rm I}$$ is an identity matrix. Let matrix $${A^ + } = {\left( {{A^T}A} \right)^{...
GATE EE 2007
$$X = {\left[ {\matrix{ {{x_1}} & {{x_2}} & {.......\,{x_n}} \cr } } \right]^T}$$ is an $$n$$-tuple non- zero vector. The $$n\,\, \time...
GATE EE 2005
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solution for the unknown vector $$X.$...
GATE EE 2002
The determinant of the matrix $$\left[ {\matrix{ 1 & 0 & 0 & 0 \cr {100} & 1 & 0 & 0 \cr {100} & {200} & ...
GATE EE 1999
If $$A = \left[ {\matrix{ 1 & { - 2} & { - 1} \cr 2 & 3 & 1 \cr 0 & 5 & { - 2} \cr } } \right]$$ and $$adj (A...
GATE EE 1999
Find the eigen values and eigen vectors of the matrix $$\left[ {\matrix{ 3 & { - 1} \cr { - 1} & 3 \cr } } \right]$$
GATE EE 1998
$$A = \left[ {\matrix{ 2 & 0 & 0 & { - 1} \cr 0 & 1 & 0 & 0 \cr 0 & 0 & 3 & 0 \cr { - 1} & 0...
GATE EE 1998
If the vector $$\left[ {\matrix{ 1 \cr 2 \cr { - 1} \cr } } \right]$$ is an eigen vector of $$A = \left[ {\matrix{ { - 2} & 2 ...
GATE EE 1998
If $$A = \left[ {\matrix{ 5 & 0 & 2 \cr 0 & 3 & 0 \cr 2 & 0 & 1 \cr } } \right]$$ then $${A^{ - 1}} = $$
GATE EE 1998
A set of linear equations is represented by the matrix equations $$Ax=b.$$ The necessary condition for the existence of a solution for this system is
GATE EE 1997
Express the given matrix $$A = \left[ {\matrix{ 2 & 1 & 5 \cr 4 & 8 & {13} \cr 6 & {27} & {31} \cr } } \right...
GATE EE 1995
The inverse of the matrix $$S = \left[ {\matrix{ 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right]$$...
GATE EE 1995
Given the matrix $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 6} & { - 11} & { - 6} \cr } } \right]...
GATE EE 1995
The rank of the following $$(n+1)$$ $$x$$ $$(n+1)$$ matrix, where $$'a'$$ is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . ...
GATE EE 1994
The eigen values of the matrix $$\left[ {\matrix{ a & 1 \cr a & 1 \cr } } \right]$$ are
GATE EE 1994
$$A$$ $$\,\,5 \times 7$$ matrix has all its entries equal to $$1.$$ Then the rank of a matrix is
GATE EE 1994
The number of linearly independent solutions of the system of equations $$\left[ {\matrix{ 1 & 0 & 2 \cr 1 & { - 1} & 0 \cr ...

Marks 2

GATE EE 2022
e4 denotes the exponential of a square matrix A. Suppose $$\lambda$$ is an eigen value and v is the corresponding eigen-vector of matrix A. Consider t...
GATE EE 2022
Consider a matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 2} \cr 0 & 1 & 1 \cr } } \right]$$. The matrix A satisfies the equ...
GATE EE 2017 Set 2
The eigen values of the matrix given below are $$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & { - 3} & { - 4}...
GATE EE 2016 Set 2
Let $$P = \left[ {\matrix{ 3 & 1 \cr 1 & 3 \cr } } \right].$$ Consider the set $$S$$ of all vectors $$\left( {\matrix{ x \cr ...
GATE EE 2016 Set 1
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eige...
GATE EE 2016 Set 1
Let $$A$$ be a $$4 \times 3$$ real matrix which rank$$2.$$ Which one of the following statement is TRUE?
GATE EE 2015 Set 1
The maximum value of $$'a'$$ such that the matrix $$\left[ {\matrix{ { - 3} & 0 & { - 2} \cr 1 & { - 1} & 0 \cr 0 & a...
GATE EE 2014 Set 3
$$A = \left[ {\matrix{ p & q \cr r & s \cr } } \right];B = \left[ {\matrix{ {{p^2} + {q^2}} & {pr + qs} \cr {pr + qs} ...
GATE EE 2014 Set 1
A system matrix is given as follows $$$A = \left[ {\matrix{ 0 & 1 & { - 1} \cr { - 6} & { - 11} & 6 \cr { - 6} & { -...
GATE EE 2013
The equation $$\left[ {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } ...
GATE EE 2013
A matrix has eigen values $$-1$$ and $$-2.$$ The corresponding eigenvectors are $$\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]$$ and $$\l...
GATE EE 2011
The two vectors $$\left[ {\matrix{ 1 & 1 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 1 & a & {{a^2}} \cr } } \right]$$ ...
GATE EE 2011
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower tria...
GATE EE 2010
For the set of equations $$${x_1} + 2{x_2} + {x_3} + 4{x_4} = 2,$$$ $$$3{x_1} + 6{x_2} + 3{x_3} + 12{x_4} = 6.$$$ The following statement is true ...
GATE EE 2008
If the rank of a $$5x6$$ matrix $$Q$$ is $$4$$ then which one of the following statements is correct?
GATE EE 2008
Let $$P$$ be $$2x2$$ real orthogonal matrix and $$\overline x $$ is a real vector $${\left[ {\matrix{ {{x_1}} & {{x_2}} \cr } } \right]^T}$...
GATE EE 2007
$${q_1},\,{q_2},{q_3},.......{q_m}$$ are $$n$$-dimensional vectors with $$m < n.$$ This set of vectors is linearly dependent. $$Q$$ is the matrix w...
GATE EE 2007
If $$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]\,$$ then $${A^9}$$ equals
GATE EE 2007
If $$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]$$ then $$A$$ satisfies the relation
GATE EE 2007
Let $$x$$ and $$y$$ be two vectors in a $$3-$$ dimensional space and $$ < x,y > $$ denote their dot product. Then the determinant det $$\left[ {...
GATE EE 2005
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the top row...
GATE EE 2005
For the matrix $$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$$ one ...
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12