Linear Algebra · Engineering Mathematics · GATE EE

Start Practice

Marks 1

1

Which one of the following matrices has an inverse?

GATE EE 2024
2

The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2$ is ______ (rounded off to the nearest integer).

GATE EE 2024
3

For a given vector $${[\matrix{ 1 & 2 & 3 \cr } ]^T}$$, the vector normal to the plane defined by $${w^T}x = 1$$ is

GATE EE 2023
4

In the figure, the vectors u and v are related as : Au = v by a transformation matrix A. The correct choice of A is

GATE EE 2023 Engineering Mathematics - Linear Algebra Question 3 English

GATE EE 2023
5

Consider a 3 $$\times$$ 3 matrix A whose (i, j)-th element, ai,j = (i $$-$$ j)3. Then the matrix A will be

GATE EE 2022
6
The matrix $$A = \left[ {\matrix{ {{3 \over 2}} & 0 & {{1 \over 2}} \cr 0 & { - 1} & 0 \cr {{1 \over 2}} & 0 & {{3 \over 2}} \cr } } \right]$$ has three distinct eigen values and one of its eigen vectors is $$\left[ {\matrix{ 1 \cr 0 \cr 1 \cr } } \right].$$ Which one of the following can be another eigen vector of $$A$$?
GATE EE 2017 Set 1
7
$$A$$ $$3 \times 3$$ matrix $$P$$ is such that , $${p^3} = P.$$ Then the eigen values of $$P$$ are
GATE EE 2016 Set 2
8
Consider $$3 \times 3$$ matrix with every element being equal to $$1.$$ Its only non-zero eigenvalue is __________.
GATE EE 2016 Set 1
9
If the sum of the diagonal elements of a $$2 \times 2$$ matrix is $$-6$$, then the maximum possible value of determinant of the matrix is ____________.
GATE EE 2015 Set 1
10
We have a set of $$3$$ linear equations in $$3$$ unknown. $$'X \equiv Y'$$ means $$X$$ and $$Y$$ are equivalent statements and $$'X \ne Y'$$ means $$X$$ and $$y$$ are not equivalent statements.

$$P:$$ There is a unique solution.
$$Q:$$ The equations are linearly independent .
$$R:$$ All eigen values of the coefficient matrix are non zero .
$$S:$$ The determinant of the coefficient matrix is non-zero .


Which one of the following is TRUE?
GATE EE 2015 Set 2
11
Which one of the following statements is true for all real symmetric matrices?
GATE EE 2014 Set 2
12
Given a system of equations $$$x + 2y + 2z = {b_1}$$$ $$$5x + y + 3z = {b_2}$$$
Which of the following is true its solutions
GATE EE 2014 Set 1
13
Given that $$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$ and $${\rm I} = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ the value of $${A^3}$$ is
GATE EE 2012
14
An eigen vector of $$p = \left[ {\matrix{ 1 & 1 & 0 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$ is
GATE EE 2010
15
The trace and determinant of a $$2 \times 2$$ matrix are shown to be $$-2$$ and $$-35$$ respectively. Its eigen values are
GATE EE 2009
16
The characteristic equation of a $$3\,\, \times \,\,3$$ matrix $$P$$ is defined as
$$\alpha \left( \lambda \right) = \left| {\lambda {\rm I} - P} \right| = {\lambda ^3} + 2\lambda + {\lambda ^2} + 1 = 0.$$
If $${\rm I}$$ denotes identity matrix then the inverse of $$P$$ will be
GATE EE 2008
17
$$A$$ is $$m$$ $$x$$ $$n$$ full rank matrix with $$m > n$$ and $${\rm I}$$ is an identity matrix. Let matrix $${A^ + } = {\left( {{A^T}A} \right)^{ - 1}}{A^T}.$$ Then which one of the following statement is false?
GATE EE 2008
18
$$X = {\left[ {\matrix{ {{x_1}} & {{x_2}} & {.......\,{x_n}} \cr } } \right]^T}$$ is an $$n$$-tuple non-
zero vector. The $$n\,\, \times \,\,n$$ matrix $$V = X{X^T}$$
GATE EE 2007
19
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solution for the unknown vector $$X.$$
GATE EE 2005
20
The determinant of the matrix $$\left[ {\matrix{ 1 & 0 & 0 & 0 \cr {100} & 1 & 0 & 0 \cr {100} & {200} & 1 & 0 \cr {100} & {200} & {300} & 1 \cr } } \right]$$ is
GATE EE 2002
21
If $$A = \left[ {\matrix{ 1 & { - 2} & { - 1} \cr 2 & 3 & 1 \cr 0 & 5 & { - 2} \cr } } \right]$$ and $$adj (A)$$ $$ = \left[ {\matrix{ { - 11} & { - 9} & 1 \cr 4 & { - 2} & { - 3} \cr {10} & k & 7 \cr } } \right]$$ then $$k=$$
GATE EE 1999
22
Find the eigen values and eigen vectors of the matrix $$\left[ {\matrix{ 3 & { - 1} \cr { - 1} & 3 \cr } } \right]$$
GATE EE 1999
23
$$A = \left[ {\matrix{ 2 & 0 & 0 & { - 1} \cr 0 & 1 & 0 & 0 \cr 0 & 0 & 3 & 0 \cr { - 1} & 0 & 0 & 4 \cr } } \right].$$ The sum of the eigen values of the matrix $$A$$ is
GATE EE 1998
24
If the vector $$\left[ {\matrix{ 1 \cr 2 \cr { - 1} \cr } } \right]$$ is an eigen vector of $$A = \left[ {\matrix{ { - 2} & 2 & { - 3} \cr 2 & 1 & { - 6} \cr { - 1} & { - 2} & 0 \cr } } \right]$$ then one of the eigen value of $$A$$ is
GATE EE 1998
25
If $$A = \left[ {\matrix{ 5 & 0 & 2 \cr 0 & 3 & 0 \cr 2 & 0 & 1 \cr } } \right]$$ then $${A^{ - 1}} = $$
GATE EE 1998
26
A set of linear equations is represented by the matrix equations $$Ax=b.$$ The necessary condition for the existence of a solution for this system is
GATE EE 1998
27
Express the given matrix $$A = \left[ {\matrix{ 2 & 1 & 5 \cr 4 & 8 & {13} \cr 6 & {27} & {31} \cr } } \right]$$
as a product of triangular matrices $$L$$ and $$U$$ where the diagonal elements of the lower triangular matrices $$L$$ are unity and $$U$$ is an upper triangular matrix.
GATE EE 1997
28
The inverse of the matrix $$S = \left[ {\matrix{ 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right]$$ is
GATE EE 1995
29
Given the matrix $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 6} & { - 11} & { - 6} \cr } } \right].\,\,$$ Its eigen values are
GATE EE 1995
30
The rank of the following $$(n+1)$$ $$x$$ $$(n+1)$$ matrix, where $$'a'$$ is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & {} & {} & {} & {} & {} & {} \cr . & {} & {} & {} & {} & {} & {} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
GATE EE 1995
31
The eigen values of the matrix $$\left[ {\matrix{ a & 1 \cr a & 1 \cr } } \right]$$ are
GATE EE 1994
32
$$A$$ $$\,\,5 \times 7$$ matrix has all its entries equal to $$1.$$ Then the rank of a matrix is
GATE EE 1994
33
The number of linearly independent solutions of the system of equations
$$\left[ {\matrix{ 1 & 0 & 2 \cr 1 & { - 1} & 0 \cr 2 & { - 2} & 0 \cr } } \right]\,\,\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = 0$$ is equal to
GATE EE 1994

Marks 2

1

e4 denotes the exponential of a square matrix A. Suppose $$\lambda$$ is an eigen value and v is the corresponding eigen-vector of matrix A.

Consider the following two statements:

Statement 1 : e$$\lambda$$ is an eigen value of eA.

Statement 2 : v is an eigen-vector of eA.

Which one of the following options is correct?

GATE EE 2022
2

Consider a matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 2} \cr 0 & 1 & 1 \cr } } \right]$$. The matrix A satisfies the equation 6A$$-$$1 = A2 + cA + dI, where c and d are scalars and I is the identify matrix. Then (c + d) is equal to

GATE EE 2022
3
The eigen values of the matrix given below are $$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & { - 3} & { - 4} \cr } } \right]$$
GATE EE 2017 Set 2
4
Let $$P = \left[ {\matrix{ 3 & 1 \cr 1 & 3 \cr } } \right].$$ Consider the set $$S$$ of all vectors $$\left( {\matrix{ x \cr y \cr } } \right)$$ such that $${a^2} + {b^2} = 1$$ where $$\left( {\matrix{ a \cr b \cr } } \right) = P\left( {\matrix{ x \cr y \cr } } \right).$$ Then $$S$$ is
GATE EE 2016 Set 2
5
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eigenvectors of the matrix $${A^2} - 3A + 4{\rm I}$$ would respectively, be
GATE EE 2016 Set 1
6
Let $$A$$ be a $$4 \times 3$$ real matrix which rank$$2.$$ Which one of the following statement is TRUE?
GATE EE 2016 Set 1
7
The maximum value of $$'a'$$ such that the matrix $$\left[ {\matrix{ { - 3} & 0 & { - 2} \cr 1 & { - 1} & 0 \cr 0 & a & { - 2} \cr } } \right]$$ has three linearly independent real eigenvectors is
GATE EE 2015 Set 1
8
$$A = \left[ {\matrix{ p & q \cr r & s \cr } } \right];B = \left[ {\matrix{ {{p^2} + {q^2}} & {pr + qs} \cr {pr + qs} & {{r^2} + {s^2}} \cr } } \right]$$
If the rank of matrix $$A$$ is $$N$$, then the rank of matrix $$B$$ is
GATE EE 2014 Set 3
9
A system matrix is given as follows $$$A = \left[ {\matrix{ 0 & 1 & { - 1} \cr { - 6} & { - 11} & 6 \cr { - 6} & { - 11} & 5 \cr } } \right].$$$

The absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue is ___________.

GATE EE 2014 Set 1
10
The equation $$\left[ {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$ has
GATE EE 2013
11
A matrix has eigen values $$-1$$ and $$-2.$$ The corresponding eigenvectors are $$\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]$$ respectively. The matrix is
GATE EE 2013
12
The two vectors $$\left[ {\matrix{ 1 & 1 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 1 & a & {{a^2}} \cr } } \right]$$ where $$a = - {1 \over 2} + j{{\sqrt 3 } \over 2}$$ and $$j = \sqrt { - 1} $$ are
GATE EE 2011
13
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
GATE EE 2011
14
For the set of equations $$${x_1} + 2{x_2} + {x_3} + 4{x_4} = 2,$$$ $$$3{x_1} + 6{x_2} + 3{x_3} + 12{x_4} = 6.$$$
The following statement is true
GATE EE 2010
15
If the rank of a $$5x6$$ matrix $$Q$$ is $$4$$ then which one of the following statements is correct?
GATE EE 2008
16
Let $$P$$ be $$2x2$$ real orthogonal matrix and $$\overline x $$ is a real vector $${\left[ {\matrix{ {{x_1}} & {{x_2}} \cr } } \right]^T}$$ with length $$\left| {\left| {\overline x } \right|} \right| = {\left( {{x_1}^2 + {x_2}^2} \right)^{1/2}}.$$ Then which one of the following statement is correct?
GATE EE 2008
17
$${q_1},\,{q_2},{q_3},.......{q_m}$$ are $$n$$-dimensional vectors with $$m < n.$$ This set of vectors is linearly dependent. $$Q$$ is the matrix with $${q_1},\,{q_2},{q_3},.......{q_m}$$ as the columns. The rank of $$Q$$ is
GATE EE 2007
18
If $$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]\,$$ then $${A^9}$$ equals
GATE EE 2007
19
If $$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]$$ then $$A$$ satisfies the relation
GATE EE 2007
20
Let $$x$$ and $$y$$ be two vectors in a $$3-$$ dimensional space and $$ < x,y > $$ denote their dot product. Then the determinant det $$\left[ {\matrix{ { < x,x > } & { < x,y > } \cr { < y,x > } & { < y,y > } \cr } } \right] = $$ ______.
GATE EE 2007
21
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the top row of $${R^{ - 1}}$$ is
GATE EE 2005
22
For the matrix $$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$$ one of the eigen values is $$-2.$$ Which of the following is an eigen vector?
GATE EE 2005
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12