Linear Algebra · Engineering Mathematics · GATE EE
Start PracticeMarks 1
GATE EE 2024
Which one of the following matrices has an inverse?
GATE EE 2024
The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2$ is ______ (rounded off to the nearest integer).
GATE EE 2023
For a given vector $${[\matrix{
1 & 2 & 3 \cr
} ]^T}$$, the vector normal to the plane defined by $${w^T}x = 1$$ is
GATE EE 2023
In the figure, the vectors u and v are related as : Au = v by a transformation matrix A. The correct choice of A is
...
GATE EE 2022
Consider a 3 $$\times$$ 3 matrix A whose (i, j)-th element, ai,j = (i $$-$$ j)3. Then the matrix A will be
GATE EE 2017 Set 1
The matrix $$A = \left[ {\matrix{
{{3 \over 2}} & 0 & {{1 \over 2}} \cr
0 & { - 1} & 0 \cr
{{1 \over 2}} & 0 & {{...
GATE EE 2016 Set 2
$$A$$ $$3 \times 3$$ matrix $$P$$ is such that , $${p^3} = P.$$ Then the eigen values of $$P$$ are
GATE EE 2016 Set 1
Consider $$3 \times 3$$ matrix with every element being equal to $$1.$$ Its only non-zero eigenvalue is __________.
GATE EE 2015 Set 1
If the sum of the diagonal elements of a $$2 \times 2$$ matrix is $$-6$$, then the maximum possible value of determinant of the matrix is ____________...
GATE EE 2015 Set 2
We have a set of $$3$$ linear equations in $$3$$ unknown. $$'X \equiv Y'$$ means $$X$$ and $$Y$$ are equivalent statements and $$'X \ne Y'$$ means $$X...
GATE EE 2014 Set 2
Which one of the following statements is true for all real symmetric matrices?
GATE EE 2014 Set 1
Given a system of equations
$$$x + 2y + 2z = {b_1}$$$
$$$5x + y + 3z = {b_2}$$$
Which of the following is true its solutions
GATE EE 2012
Given that $$A = \left[ {\matrix{
{ - 5} & { - 3} \cr
2 & 0 \cr
} } \right]$$ and $${\rm I} = \left[ {\matrix{
1 & 0 \cr
...
GATE EE 2010
An eigen vector of $$p = \left[ {\matrix{
1 & 1 & 0 \cr
0 & 2 & 2 \cr
0 & 0 & 3 \cr
} } \right]$$ is
GATE EE 2009
The trace and determinant of a $$2 \times 2$$ matrix are shown to be $$-2$$ and $$-35$$ respectively. Its eigen values are
GATE EE 2008
The characteristic equation of a $$3\,\, \times \,\,3$$ matrix $$P$$ is defined as
$$\alpha \left( \lambda \right) = \left| {\lambda {\rm I} - P} \r...
GATE EE 2008
$$A$$ is $$m$$ $$x$$ $$n$$ full rank matrix with $$m > n$$ and $${\rm I}$$ is an identity matrix. Let matrix $${A^ + } = {\left( {{A^T}A} \right)^{...
GATE EE 2007
$$X = {\left[ {\matrix{
{{x_1}} & {{x_2}} & {.......\,{x_n}} \cr
} } \right]^T}$$ is an $$n$$-tuple non-
zero vector. The $$n\,\, \time...
GATE EE 2005
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solution for the unknown vector $$X.$...
GATE EE 2002
The determinant of the matrix $$\left[ {\matrix{
1 & 0 & 0 & 0 \cr
{100} & 1 & 0 & 0 \cr
{100} & {200} & ...
GATE EE 1999
If $$A = \left[ {\matrix{
1 & { - 2} & { - 1} \cr
2 & 3 & 1 \cr
0 & 5 & { - 2} \cr
} } \right]$$ and $$adj (A...
GATE EE 1999
Find the eigen values and eigen vectors of the matrix $$\left[ {\matrix{
3 & { - 1} \cr
{ - 1} & 3 \cr
} } \right]$$
GATE EE 1998
$$A = \left[ {\matrix{
2 & 0 & 0 & { - 1} \cr
0 & 1 & 0 & 0 \cr
0 & 0 & 3 & 0 \cr
{ - 1} & 0...
GATE EE 1998
A set of linear equations is represented by the matrix equations $$Ax=b.$$ The necessary condition for the existence of a solution for this system is
GATE EE 1998
If the vector $$\left[ {\matrix{
1 \cr
2 \cr
{ - 1} \cr
} } \right]$$ is an eigen vector of $$A = \left[ {\matrix{
{ - 2} & 2 ...
GATE EE 1998
If $$A = \left[ {\matrix{
5 & 0 & 2 \cr
0 & 3 & 0 \cr
2 & 0 & 1 \cr
} } \right]$$ then $${A^{ - 1}} = $$
GATE EE 1997
Express the given matrix $$A = \left[ {\matrix{
2 & 1 & 5 \cr
4 & 8 & {13} \cr
6 & {27} & {31} \cr
} } \right...
GATE EE 1995
The inverse of the matrix $$S = \left[ {\matrix{
1 & { - 1} & 0 \cr
1 & 1 & 1 \cr
0 & 0 & 1 \cr
} } \right]$$...
GATE EE 1995
Given the matrix $$A = \left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
{ - 6} & { - 11} & { - 6} \cr
} } \right]...
GATE EE 1995
The rank of the following $$(n+1)$$ $$x$$ $$(n+1)$$ matrix, where $$'a'$$ is a real number is
$$$\left[ {\matrix{
1 & a & {{a^2}} & . ...
GATE EE 1994
$$A$$ $$\,\,5 \times 7$$ matrix has all its entries equal to $$1.$$ Then the rank of a matrix is
GATE EE 1994
The eigen values of the matrix $$\left[ {\matrix{
a & 1 \cr
a & 1 \cr
} } \right]$$ are
GATE EE 1994
The number of linearly independent solutions of the system of equations
$$\left[ {\matrix{
1 & 0 & 2 \cr
1 & { - 1} & 0 \cr ...
Marks 2
GATE EE 2022
e4 denotes the exponential of a square matrix A. Suppose $$\lambda$$ is an eigen value and v is the corresponding eigen-vector of matrix A.
Consider t...
GATE EE 2022
Consider a matrix $$A = \left[ {\matrix{
1 & 0 & 0 \cr
0 & 4 & { - 2} \cr
0 & 1 & 1 \cr
} } \right]$$. The matrix A satisfies the equ...
GATE EE 2017 Set 2
The eigen values of the matrix given below are $$\left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
0 & { - 3} & { - 4}...
GATE EE 2016 Set 2
Let $$P = \left[ {\matrix{
3 & 1 \cr
1 & 3 \cr
} } \right].$$ Consider the set $$S$$ of all vectors $$\left( {\matrix{
x \cr
...
GATE EE 2016 Set 1
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eige...
GATE EE 2016 Set 1
Let $$A$$ be a $$4 \times 3$$ real matrix which rank$$2.$$ Which one of the following statement is TRUE?
GATE EE 2015 Set 1
The maximum value of $$'a'$$ such that the matrix $$\left[ {\matrix{
{ - 3} & 0 & { - 2} \cr
1 & { - 1} & 0 \cr
0 & a...
GATE EE 2014 Set 3
$$A = \left[ {\matrix{
p & q \cr
r & s \cr
} } \right];B = \left[ {\matrix{
{{p^2} + {q^2}} & {pr + qs} \cr
{pr + qs} ...
GATE EE 2014 Set 1
A system matrix is given as follows
$$$A = \left[ {\matrix{
0 & 1 & { - 1} \cr
{ - 6} & { - 11} & 6 \cr
{ - 6} & { -...
GATE EE 2013
The equation $$\left[ {\matrix{
2 & { - 2} \cr
1 & { - 1} \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } ...
GATE EE 2013
A matrix has eigen values $$-1$$ and $$-2.$$ The corresponding eigenvectors are $$\left[ {\matrix{
1 \cr
{ - 1} \cr
} } \right]$$ and $$\l...
GATE EE 2011
The two vectors $$\left[ {\matrix{
1 & 1 & 1 \cr
} } \right]$$ and $$\left[ {\matrix{
1 & a & {{a^2}} \cr
} } \right]$$ ...
GATE EE 2011
The matrix $$\left[ A \right] = \left[ {\matrix{
2 & 1 \cr
4 & { - 1} \cr
} } \right]$$ is decomposed into a product of lower tria...
GATE EE 2010
For the set of equations
$$${x_1} + 2{x_2} + {x_3} + 4{x_4} = 2,$$$
$$$3{x_1} + 6{x_2} + 3{x_3} + 12{x_4} = 6.$$$
The following statement is true ...
GATE EE 2008
If the rank of a $$5x6$$ matrix $$Q$$ is $$4$$ then which one of the following statements is correct?
GATE EE 2008
Let $$P$$ be $$2x2$$ real orthogonal matrix and $$\overline x $$ is a real vector $${\left[ {\matrix{
{{x_1}} & {{x_2}} \cr
} } \right]^T}$...
GATE EE 2007
$${q_1},\,{q_2},{q_3},.......{q_m}$$ are $$n$$-dimensional vectors with $$m < n.$$ This set of vectors is linearly dependent. $$Q$$ is the matrix w...
GATE EE 2007
If $$A = \left[ {\matrix{
{ - 3} & 2 \cr
{ - 1} & 0 \cr
} } \right]\,$$ then $${A^9}$$ equals
GATE EE 2007
If $$A = \left[ {\matrix{
{ - 3} & 2 \cr
{ - 1} & 0 \cr
} } \right]$$ then $$A$$ satisfies the relation
GATE EE 2007
Let $$x$$ and $$y$$ be two vectors in a $$3-$$ dimensional space and $$ < x,y > $$ denote their dot product. Then the determinant det $$\left[ {...
GATE EE 2005
For the matrix $$P = \left[ {\matrix{
3 & { - 2} & 2 \cr
0 & { - 2} & 1 \cr
0 & 0 & 1 \cr
} } \right],$$ one ...
GATE EE 2005
If $$R = \left[ {\matrix{
1 & 0 & { - 1} \cr
2 & 1 & { - 1} \cr
2 & 3 & 2 \cr
} } \right]$$ then the top row...