Marks 1

More
The matrix $$A = \left[ {\matrix{ {{3 \over 2}} & 0 & {{1 \over 2}} \cr 0 & { - 1} & 0 \cr {{1 \over 2}} & ... GATE EE 2017 Set 1$$A3 \times 3$$matrix$$P$$is such that ,$${p^3} = P.$$Then the eigen values of$$P$$are GATE EE 2016 Set 2 Consider$$3 \times 3$$matrix with every element being equal to$$1.$$Its only non-zero eigenvalue is __________. GATE EE 2016 Set 1 We have a set of$$3$$linear equations in$$3$$unknown.$$'X \equiv Y'$$means$$X$$and$$Y$$are equivalent statemen... GATE EE 2015 Set 2 If the sum of the diagonal elements of a$$2 \times 2$$matrix is$$-6$$, then the maximum possible value of determinant... GATE EE 2015 Set 1 Which one of the following statements is true for all real symmetric matrices? GATE EE 2014 Set 2 Given a system of equations$$$x + 2y + 2z = {b_1}$5x + y + 3z = {b_2}$$Which of the following is true its solu... GATE EE 2014 Set 1 Given that$$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$and$${\rm I} = \left[ {\matri...
GATE EE 2012
An eigen vector of $$p = \left[ {\matrix{ 1 & 1 & 0 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$ is
GATE EE 2010
The trace and determinant of a $$2 \times 2$$ matrix are shown to be $$-2$$ and $$-35$$ respectively. Its eigen values a...
GATE EE 2009
The characteristic equation of a $$3\,\, \times \,\,3$$ matrix $$P$$ is defined as $$\alpha \left( \lambda \right) = \... GATE EE 2008$$A$$is$$mxn$$full rank matrix with$$m > n$$and$${\rm I}$$is an identity matrix. Let matrix$${A^ + } =...
GATE EE 2008
$$X = {\left[ {\matrix{ {{x_1}} & {{x_2}} & {.......\,{x_n}} \cr } } \right]^T}$$ is an $$n$$-tuple non- zero vec...
GATE EE 2007
In the matrix equation $$PX=Q$$ which of the following is a necessary condition for the existence of atleast one solutio...
GATE EE 2005
The determinant of the matrix $$\left[ {\matrix{ 1 & 0 & 0 & 0 \cr {100} & 1 & 0 & 0 \cr {100} & {200} & 1 ... GATE EE 2002 If$$A = \left[ {\matrix{ 1 & { - 2} & { - 1} \cr 2 & 3 & 1 \cr 0 & 5 & { - 2} \cr } } \right]$$and$$...
GATE EE 1999
Find the eigen values and eigen vectors of the matrix $$\left[ {\matrix{ 3 & { - 1} \cr { - 1} & 3 \cr } } \... GATE EE 1999 If the vector$$\left[ {\matrix{ 1 \cr 2 \cr { - 1} \cr } } \right]$$is an eigen vector of$$A = \left...
GATE EE 1998
$$A = \left[ {\matrix{ 2 & 0 & 0 & { - 1} \cr 0 & 1 & 0 & 0 \cr 0 & 0 & 3 & 0 \cr { - 1} & 0 & 0 & 4 ... GATE EE 1998 If$$A = \left[ {\matrix{ 5 & 0 & 2 \cr 0 & 3 & 0 \cr 2 & 0 & 1 \cr } } \right]$$then$${A^{ - 1}} = $... GATE EE 1998 A set of linear equations is represented by the matrix equations $$Ax=b.$$ The necessary condition for the existence of ... GATE EE 1998 Express the given matrix $$A = \left[ {\matrix{ 2 & 1 & 5 \cr 4 & 8 & {13} \cr 6 & {27} & {31} \cr } } ... GATE EE 1997 The inverse of the matrix$$S = \left[ {\matrix{ 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr } } \ri... GATE EE 1995 Given the matrix $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 6} & { - 11} & { - 6} \cr } } \... GATE EE 1995 The rank of the following$$(n+1)x(n+1)$$matrix, where$$'a'$$is a real number is$$$\left[ {\matrix{ 1 ...
GATE EE 1995
$$A$$ $$\,\,5 \times 7$$ matrix has all its entries equal to $$1.$$ Then the rank of a matrix is
GATE EE 1994
The eigen values of the matrix $$\left[ {\matrix{ a & 1 \cr a & 1 \cr } } \right]$$ are
GATE EE 1994
The number of linearly independent solutions of the system of equations $$\left[ {\matrix{ 1 & 0 & 2 \cr 1 & { ... GATE EE 1994 Marks 2 More The eigen values of the matrix given below are$$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & { - 3} & ...
GATE EE 2017 Set 2
Let $$P = \left[ {\matrix{ 3 & 1 \cr 1 & 3 \cr } } \right].$$ Consider the set $$S$$ of all vectors $$\left(... GATE EE 2016 Set 2 Let the eigenvalues of a$$2 \times 2$$matrix$$A$$be$$1,-2$$with eigenvectors$${x_1}$$and$${x_2}$$respectively.... GATE EE 2016 Set 1 Let$$A$$be a$$4 \times 3$$real matrix which rank$$2.$$Which one of the following statement is TRUE? GATE EE 2016 Set 1 The maximum value of$$'a'$$such that the matrix$$\left[ {\matrix{ { - 3} & 0 & { - 2} \cr 1 & { - 1} & 0 \cr...
GATE EE 2015 Set 1
$$A = \left[ {\matrix{ p & q \cr r & s \cr } } \right];B = \left[ {\matrix{ {{p^2} + {q^2}} & {pr + qs} ... GATE EE 2014 Set 3 A system matrix is given as follows$$$A = \left[ {\matrix{ 0 & 1 & { - 1} \cr { - 6} & { - 11} & 6 \cr { ... GATE EE 2014 Set 1 The equation $$\left[ {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr ... GATE EE 2013 A matrix has eigen values$$-1$$and$$-2.$$The corresponding eigenvectors are$$\left[ {\matrix{ 1 \cr { - 1} ... GATE EE 2013 The two vectors $$\left[ {\matrix{ 1 & 1 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 1 & a & {{a^2}} \cr ... GATE EE 2011 The matrix$$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$is decomposed into a... GATE EE 2011 For the set of equations$$${x_1} + 2{x_2} + {x_3} + 4{x_4} = 2,$3{x_1} + 6{x_2} + 3{x_3} + 12{x_4} = 6.$$The f... GATE EE 2010 If the rank of a$$5x6$$matrix$$Q$$is$$4$$then which one of the following statements is correct? GATE EE 2008 Let$$P$$be$$2x2$$real orthogonal matrix and$$\overline x $$is a real vector$${\left[ {\matrix{ {{x_1}} & {{x_2... GATE EE 2008 $${q_1},\,{q_2},{q_3},.......{q_m}$$ are $$n$$-dimensional vectors with $$m ... GATE EE 2007 If$$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]$$then$$A$$satisfies the relation GATE EE 2007 If$$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]\,$$then$${A^9}$$equals GATE EE 2007 Let$$x$$and$$y$$be two vectors in a$$3-$$dimensional space and$$ $$denote their dot product. Then the determina... GATE EE 2007 For the matrix$$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$...
GATE EE 2005
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the t...
GATE EE 2005

EXAM MAP

Graduate Aptitude Test in Engineering

GATE ECE GATE CSE GATE CE GATE EE GATE ME GATE PI GATE IN

Joint Entrance Examination

JEE Main JEE Advanced