1
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The signal $$\cos \left( {10\pi t + {\pi \over 4}} \right)$$ is ideally sampled at a sampling frequency of 15 Hz. The sampled signal is passed through a filter with impulse response $$\,\left( {{{\sin \left( {\pi t} \right)} \over {\pi t}}} \right)\,\cos \left( {40\pi t - {\pi \over 2}} \right).$$ The filter output is
2
GATE ECE 2014 Set 1
Numerical
+1
-0
Consider two real valued signals, $$x\left( t \right)$$ band - limited to $$\,\left[ { - 500Hz,\,\,500Hz} \right]$$ and $$y\left( t \right)$$ band - limited to $$\,\left[ { - 1\,\,kHz,\,\,1kHz} \right].$$ For $$z\left( t \right)\,\, = \,x\left( t \right).y\left( t \right),$$ the Nyquist sampling frequency $$\left( {in\,\,kHz} \right)$$ is________.
Your input ____
3
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,x\,\,\left( t \right)\,\,\, = \,\,\,\cos \,\,\,\left( {10\pi t} \right)\,\, + \,\,\cos \,\,\left( {30\pi t} \right)$$ be sampled at $$20\,\,\,Hz$$ and reconstructed using an ideal low-pass filter with cut-off frequency of $$20\,\,\,Hz$$. The frequency/frequencies present in the reconstructed signal is/are.
4
GATE ECE 2014 Set 3
Numerical
+1
-0
A modulated signal is $$y\left( t \right)\, = \,\,\,\,\,\,\,\,\,m\left( t \right)\,\cos \left( {40000\pi t} \right),$$ where the baseband signal $$m\left( t \right)\,$$ has frequency components less than 5 kHz only. The minimum required rate (in kHz) at which $$y\,\,\left( t \right)$$ should be sampled to recover $$m\,\,\left( t \right)$$ is ________.
Your input ____
Questions Asked from Sampling (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics