1
GATE ECE 2016 Set 2
Numerical
+2
-0
The ordinary differential equation $$\,\,{{dx} \over {dt}} = - 3x + 2,\,\,$$ with $$x(0)=1$$ is to be solved using the forward Euler method. The largest time step that can be used to solve the equation without making the numerical solution unstable is _________.
Your input ____
2
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Match the application to appropriate numerical method
Applications
$$P1:$$ Numerical integration
$$P2:$$ Solution to a transcendental equation
$$P3:$$ Solution to a system of linear equations
$$P4:$$ Solution to a differential equation
Numerical Method
$$M1:$$ Newton-Raphson Method
$$M2:$$ Runge-Kutta Method
$$M3:$$ Simpson's $$1/3-$$rule
$$M4:$$ Gauss Elimination Method
3
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Match the following and choose the correct combination
Group $$-$$ $${\rm I}$$
$$E.$$ Newton $$-$$ Raphson method
$$F.$$ Runge-Kutta method
$$G.$$ Simpson's Rule
$$H.$$ Gauss elimination
Group $$-$$ $${\rm II}$$
$$(1)$$ Solving non-linear equations
$$(2)$$ Solving linear simultaneous equations
$$(3)$$ Solving ordinary differential equations
$$(4)$$ Numerical integration method
$$(5)$$ Interpolation
$$(6)$$ Calculation of eigen values
Questions Asked from Numerical Methods (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Fourier Transform
Continuous Time Signal Laplace Transform
Discrete Time Signal Fourier Series Fourier Transform
Discrete Fourier Transform and Fast Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Discrete Time Linear Time Invariant Systems
Transmission of Signal Through Continuous Time LTI Systems
Sampling
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics