1
GATE ECE 2017 Set 1
Numerical
+1
-0
Let $$\left( {{X_1},\,{X_2}} \right)$$ be independent random variables, $${X_1}$$ has mean 0 and variance 1, while $${X_2}$$ has mean 1 and variance 4. The mutual information I $$\left( {{X_1},\,{X_2}} \right)$$ between $${{X_1}}$$ and $${{X_2}}$$ in bits is ________________.
2
GATE ECE 2016 Set 3
Numerical
+1
-0
An analog baseband signal, band limited to 100 Hz, is sampled at the Nyquist rate. The samples are quantized into four message symbols that occur independently with probabilities $${p_1}$$ = $${p_4}$$ = 0.125 and $${p_2}$$ =$${p_3}$$. The information rate (bits/sec) of the message source is ____________________
3
GATE ECE 2016 Set 2
Numerical
+1
-0
A discrete memoryless source has an alphabet $$({a_1},\,{a_2},\,{a_3},\,{a_4})\,$$ with corresponding probabilities$$\left( {{1 \over 2}\,\,,{1 \over 4},\,{1 \over 8},\,\,{1 \over 8}\,} \right)$$. The minimum required average codeword length in bits to represent this source for error-free reconstruction is__________________________
4
GATE ECE 2012
+1
-0.3
A source alphabet consists of N symbols with the probability of the first two symbols being the same. A source encoder increases the probability of the first symbol by a small amount $$\varepsilon$$ and decreases that of the second by $$\varepsilon$$. After encoding, the entropy of the source
A
increases
B
remains the same
C
increases only if N = 2
D
decreases
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination