1
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
If the signal x(t) = $${{\sin (t)} \over {\pi t}}*{{\sin (t)} \over {\pi t}}$$ with * denoting the convolution operation, then x(t) is equal to
A
$${{\sin (t)} \over {\pi t}}$$
B
$${{\sin (2t)} \over {\pi t}}$$
C
$${{2\sin (t)} \over {\pi t}}$$
D
$${\left( {{{\sin (t)} \over {\pi t}}} \right)^2}$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
Let x(t) $$ \leftrightarrow $$ X($$(j\omega )$$ BE Fourier transform pair. The Fourier Transform of the signal x(5t - 3) in terms of X($$(j\omega )$$ is given as
A
$${1 \over 5}{e^{ - {{j3\omega } \over 5}}}X\left( {{{j\omega } \over 5}} \right)$$
B
$${1 \over 5}{e^{{{j3\omega } \over 5}}}X\left( {{{j\omega } \over 5}} \right)$$
C
$${1 \over 5}{e^{ - j3\omega }}X\left( {{{j\omega } \over 5}} \right)$$
D
$${1 \over 5}{e^{j3\omega }}X\left( {{{j\omega } \over 5}} \right)$$
3
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
The Fourier transform of a conjugate symmetric function is always
A
imaginary
B
conjugate anti-symmetric
C
real
D
conjugate symmetric
4
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
The Fourier transform F $$\left\{ {{e^{ - t}}u(t)} \right\}$$ is equal to $${1 \over {1 + j2\pi f}}$$. Therefore, $$F\left\{ {{1 \over {1 + j2\pi t}}} \right\}$$ is
A
$${e^f}u(f)$$
B
$${e^{ - f}}$$ u(f)
C
$${e^f}u(f)$$
D
$${e^{ - f}}$$u(-f)
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12