1
GATE ECE 2015 Set 2
Numerical
+2
-0
If $$C$$ denotes the counter clockwise unit circle. The value of the contour integral $${1 \over {2\pi i}}\oint\limits_c {{\mathop{\rm Re}\nolimits} \left\{ z \right\}dz} $$ is __________.
Your input ____
2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$z=x+iy$$ be a complex variable. Consider that contour integration is performed along the unit circle in anticlockwise direction . Which one of the following statement is NOT TRUE?
3
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If $$C$$ is a circle of radius $$r$$ with centre $${z_0}$$ in the complex $$z$$-plane and if $$'n'$$ is a non-zero integer, then $$\oint\limits_c {{{dz} \over {{{\left( {z - {z_0}} \right)}^{n + 1}}}}} $$ equals
4
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
Given $$f\left( z \right) = {1 \over {z + 1}} - {2 \over {z + 3}}.$$ If $$C$$ is a counterclockwise path in the $$z$$-plane such that
$$\left| {z + 1} \right| = 1,$$ the value of $${1 \over {2\,\pi \,j}}\oint\limits_c {f\left( z \right)dz} $$ is
$$\left| {z + 1} \right| = 1,$$ the value of $${1 \over {2\,\pi \,j}}\oint\limits_c {f\left( z \right)dz} $$ is
Questions Asked from Complex Variable (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics