1
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider the complex valued function $$f\left( z \right) = 2{z^3} + b{\left| z \right|^3}$$ where $$z$$ is a complex variable. The value of $$b$$ for which the function $$f(z)$$ is analytic is __________.
Your input ____
2
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If $$C$$ is a circle of radius $$r$$ with centre $${z_0}$$ in the complex $$z$$-plane and if $$'n'$$ is a non-zero integer, then $$\oint\limits_c {{{dz} \over {{{\left( {z - {z_0}} \right)}^{n + 1}}}}} $$ equals
A
$$2\pi nj$$
B
$$0$$
C
$${{nj} \over {2\pi }}$$
D
$$2\pi n$$
3
GATE ECE 2015 Set 2
Numerical
+2
-0
Let $$f\left( z \right) = {{az + b} \over {cz + d}}.$$ If $$f\left( {{z_1}} \right) = f\left( {{z_2}} \right)$$ for all $${z_1} \ne {z_2}.\,\,a = 2,\,\,b = 4$$ and $$C=5,$$ then $$d$$ should be equal to
Your input ____
4
GATE ECE 2015 Set 2
Numerical
+2
-0
If $$C$$ denotes the counter clockwise unit circle. The value of the contour integral $${1 \over {2\pi i}}\oint\limits_c {{\mathop{\rm Re}\nolimits} \left\{ z \right\}dz} $$ is __________.
Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12